Ahlgren, P., Persson, O., & Rousseau, R. (2014). An approach for efficient online identification of the top-k percent most cited documents in large sets of Web of Science documents. ISSI Newsletter,
10(4), 81–89.
Google Scholar
Alberts, B. (2013). Impact factor distortions. Science,
340(6134), 787.
Article
Google Scholar
Antonoyiannakis, M. (2018). Impact factors and the central limit theorem: Why citation averages are scale dependent. Journal of Informetrics,
12(4), 1072–1088.
Article
Google Scholar
Archambault, É., & Larivière, V. (2009). History of the journal impact factor: Contingencies and consequences. Scientometrics,
79(3), 635–649.
Article
Google Scholar
Bensman, S. J. (2007). Garfield and the impact factor. Annual Review of Information Science and Technology,
41(1), 93–155.
Article
Google Scholar
Bornmann, L. (2014). How are excellent (highly cited) papers defined in bibliometrics? A quantitative analysis of the literature. Research Evaluation,
23(2), 166–173.
Article
Google Scholar
Bornmann, L., De Moya Anegón, F., & Leydesdorff, L. (2012). The new excellence indicator in the World Report of the SCImago Institutions Rankings 2011. Journal of Informetrics,
6(2), 333–335. https://doi.org/10.1016/j.joi.2011.11.006.
Article
Google Scholar
Bornmann, L., & Leydesdorff, L. (2013). The validation of (advanced) bibliometric indicators through peer assessments: A comparative study using data from InCites and F1000. Journal of Informetrics,
7(2), 286–291. https://doi.org/10.1016/j.joi.2012.12.003.
Article
Google Scholar
Bornmann, L., & Mutz, R. (2011). Further steps towards an ideal method of measuring citation performance: The avoidance of citation (ratio) averages in field-normalization. Journal of Informetrics,
5(1), 228–230.
Article
Google Scholar
Bornmann, L., Mutz, R., & Daniel, H.-D. (2008). Are there better indices for evaluation purposes than the h index? A comparison of nine different variants of the h index using data from biomedicine. Journal of the American Society for Information Science and Technology,
59(5), 830–837. https://doi.org/10.1002/asi.20806.
Article
Google Scholar
Bornmann, L., Mutz, R., Hug, S. E., & Daniel, H.-D. (2011a). A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants. Journal of Informetrics,
5(3), 346–359.
Article
Google Scholar
Bornmann, L., Mutz, R., Marx, W., Schier, H., & Daniel, H.-D. (2011b). A multilevel modelling approach to investigating the predictive validity of editorial decisions: Do the editors of a high profile journal select manuscripts that are highly cited after publication? Journal of the Royal Statistical Society: Series A (Statistics in Society),
174(4), 857–879.
MathSciNet
Article
Google Scholar
Bornmann, L., Tekles, A., & Leydesdorff, L. (2019). How well does I3 perform for impact measurement compared to other bibliometric indicators? The convergent validity of several (field-normalized) indicators. Scientometrics. https://doi.org/10.1007/s11192-019-03071-6.
Google Scholar
Bornmann, L., & Williams, R. (2017). Can the journal impact factor be used as a criterion for the selection of junior researchers? A large-scale empirical study based on ResearcherID data. Journal of Informetrics,
11(3), 788–799. https://doi.org/10.1016/j.joi.2017.06.001.
Article
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
MATH
Google Scholar
Egghe, L. (2008). Mathematical theory of the h-and g-index in case of fractional counting of authorship. Journal of the American Society for Information Science and Technology,
59(10), 1608–1616.
Article
Google Scholar
Egghe, L., & Rousseau, R. (1990). Introduction to informetrics. Amsterdam: Elsevier.
Google Scholar
Frandsen, T. F., & Rousseau, R. (2005). Article impact calculated over arbitrary periods. Journal of the American Society for Information Science and Technology,
56(1), 58–62.
Article
Google Scholar
Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science,
122(3159), 108–111.
Article
Google Scholar
Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science,
178(Number 4060), 471–479.
Article
Google Scholar
Garfield, E. (1979). Is citation analysis a legitimate evaluation tool? Scientometrics,
1(4), 359–375.
Article
Google Scholar
Garfield, E. (2003). The meaning of the impact factor. Revista Internacional de Psicologia Clinica y de la Salud,
3(2), 363–369.
Google Scholar
Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA,
295(1), 90–93.
Article
Google Scholar
Garfield, E., & Sher, I. H. (1963). New factors in the evaluation of scientific literature through citation indexing. American Documentation,
14(3), 195–201.
Article
Google Scholar
Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science,
66(No. 1713 (Oct. 28, 1927)), 385–389.
Article
Google Scholar
Hicks, D., Wouters, P., Waltman, L., de Rijcke, S., & Rafols, I. (2015). Bibliometrics: The Leiden Manifesto for research metrics. Nature,
520(7548), 429–431.
Article
Google Scholar
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the USA,
102(46), 16569–16572.
Article
MATH
Google Scholar
Jacsó, P. (2009). Five-year impact factor data in the journal citation reports. Online Information Review,
33(3), 603–614.
Article
Google Scholar
Kreft, G. G., & de Leeuw, E. (1988). The see-saw effect: A multilevel problem? Quality & Quantity,
22(2), 127–137.
Article
Google Scholar
Leydesdorff, L., & Bornmann, L. (2011). Integrated impact indicators compared with impact factors: An alternative research design with policy implications. Journal of the American Society for Information Science and Technology,
62(11), 2133–2146. https://doi.org/10.1002/asi.21609.
Article
Google Scholar
Leydesdorff, L., Bornmann, L., Comins, J., & Milojević, S. (2016a). Citations: Indicators of quality? The impact fallacy. Frontiers in Research Metrics and Analytics. https://doi.org/10.3389/frma.2016.00001.
Google Scholar
Leydesdorff, L., Bornmann, L., & Mingers, J. (2019). Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings. Journal of the Association for Information Science and Technology, 70(5), 509–525. https://doi.org/10.1002/asi.24130.
Article
Google Scholar
Leydesdorff, L., Bornmann, L., Mutz, R., & Opthof, T. (2011). Turning the tables on citation analysis one more time: Principles for comparing sets of documents. Journal of the American Society for Information Science and Technology,
62(7), 1370–1381. https://doi.org/10.1002/asi.21534.
Article
Google Scholar
Leydesdorff, L., Wagner, C., & Bornmann, L. (2018). Discontinuities in citation relations among journals: Self-organized criticality as a model of scientific revolutions and change. Scientometrics,
116(1), 623–644. https://doi.org/10.1007/s11192-018-2734-6.
Article
Google Scholar
Leydesdorff, L., Wouters, P., & Bornmann, L. (2016b). Professional and citizen bibliometrics: Complementarities and ambivalences in the development and use of indicators—A state-of-the-art report. Scientometrics,
109(3), 2129–2150. https://doi.org/10.1007/s11192-016-2150-8.
Article
Google Scholar
Marchant, T. (2009). An axiomatic characterization of the ranking based on the h-index and some other bibliometric rankings of authors. Scientometrics,
80(2), 325–342.
Article
Google Scholar
Martyn, J., & Gilchrist, A. (1968). An evaluation of British scientific journals. London: Aslib.
Google Scholar
McAllister, P. R., Narin, F., & Corrigan, J. G. (1983). Programmatic evaluation and comparison based on standardized citation scores. IEEE Transactions on Engineering Management,
30(4), 205–211.
Article
Google Scholar
Moed, H. F., & Van Leeuwen, T. N. (1996). Impact factors can mislead. Nature,
381(6579), 186.
Article
Google Scholar
Narin, F. (1976). Evaluative bibliometrics: The use of publication and citation analysis in the evaluation of scientific activity. Washington, DC: National Science Foundation.
Google Scholar
Narin, F. (1987). Bibliometric techniques in the evaluation of research programs. Science and Public Policy,
14(2), 99–106.
Google Scholar
Pendlebury, D. A., & Adams, J. (2012). Comments on a critique of the Thomson Reuters journal impact factor. Scientometrics,
92, 395–401. https://doi.org/10.1007/s11192-012-0689-6.
Article
Google Scholar
Price, D. J. (1970). Citation measures of hard science, soft science, technology, and nonscience. In C. E. Nelson & D. K. Pollock (Eds.), Communication among scientists and engineers (pp. 3–22). Lexington, MA: Heath.
Google Scholar
Robinson, W. D. (1950). Ecological correlations and the behavior of individuals. American Sociological Review,
15, 351–357.
Article
Google Scholar
Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction to multidimensional scaling: Theory, methods, and applications. New York: Academic Press.
MATH
Google Scholar
Schneider, J. W. (2013). Caveats for using statistical significance tests in research assessments. Journal of Informetrics,
7(1), 50–62.
Article
Google Scholar
Seglen, P. O. (1992). The skewness of science. Journal of the American Society for Information Science,
43(9), 628–638.
Article
Google Scholar
Seglen, P. O. (1997). Why the impact factor of journals should not be used for evaluating research. British Medical Journal,
314, 498–502.
Article
Google Scholar
Sher, I. H., & Garfield, E. (1965). New tools for improving and evaluating the effectiveness of research. Paper presented at the Second conference on Research Program Effectiveness, July 27–29, Washington, DC.
Sheskin, D. J. (2011). Handbook of parametric and nonparametric statistical procedures (5th ed.). Boca Raton, FL: Chapman & Hall/CRC.
MATH
Google Scholar
Tijssen, R. J. W., Visser, M. S., & Van Leeuwen, T. N. (2002). Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference? Scientometrics,
54(3), 381–397.
Article
Google Scholar
Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E., Tijssen, R. J., Eck, N. J., et al. (2012). The Leiden ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American Society for Information Science and Technology,
63(12), 2419–2432.
Article
Google Scholar
Waltman, L., & Schreiber, M. (2013). On the calculation of percentile-based bibliometric indicators. Journal of the American Society for Information Science and Technology,
64(2), 372–379.
Article
Google Scholar
Waltman, L., & Traag, V. A. (2017). Use of the journal impact factor for assessing individual articles need not be wrong. arXiv preprint arXiv:1703.02334.
Waltman, L., & Van Eck, N. J. (2012). The inconsistency of the h-index. Journal of the American Society for Information Science and Technology,
63(2), 406–415.
Article
Google Scholar
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: context, process, and purpose. The American Statistician,
70(2), 129–133.
MathSciNet
Article
Google Scholar
Williams, R., & Bornmann, L. (2014). The substantive and practical significance of citation impact differences between institutions: Guidelines for the analysis of percentiles using effect sizes and confidence intervals. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 259–281). Heidelberg: Springer.
Google Scholar
Ye, F. Y., Bornmann, L., & Leydesdorff, L. (2017). h-based I3-type multivariate vectors: multidimensional indicators of publication and citation scores. COLLNET Journal of Scientometrics and Information Management,
11(1), 153–171.
Article
Google Scholar
Ye, F. Y., & Leydesdorff, L. (2014). The “Academic Trace” of the Performance Matrix: A Mathematical Synthesis of the h-Index and the Integrated Impact Indicator (I3). Journal of the Association for Information Science and Technology,
65(4), 742–750. https://doi.org/10.1002/asi.23075.
Article
Google Scholar