, Volume 109, Issue 2, pp 1017–1036 | Cite as

The normalization of co-authorship networks in the bibliometric evaluation: the government stimulation programs of China and Korea

  • Han Woo ParkEmail author
  • Jungwon Yoon
  • Loet Leydesdorff


Using co-authored publications between China and Korea in Web of Science (WoS) during the one-year period of 2014, we evaluate the government stimulation program for collaboration between China and Korea. In particular, we apply dual approaches, full integer versus fractional counting, to collaborative publications in order to better examine both the patterns and contents of Sino-Korean collaboration networks in terms of individual countries and institutions. We first conduct a semi-automatic network analysis of Sino-Korean publications based on the full-integer counting method, and then compare our categorization with contextual rankings using the fractional technique; routines for fractional counting of WoS data are made available at Increasing international collaboration leads paradoxically to lower numbers of publications and citations using fractional counting for performance measurement. However, integer counting is not an appropriate measure for the evaluation of the stimulation of collaborations. Both integer and fractional analytics can be used to identify important countries and institutions, but with other research questions.


Co-authorship Collaboration Fractional counting Korea China Social network analysis Integer counting 


  1. Abbasi, A., Chung, K. S. K., & Hossain, L. (2012). Egocentric analysis of co-authorship network structure, position and performance. Information Processing and Management, 48(4), 671–679.CrossRefGoogle Scholar
  2. Anderson, J., Collins, P. M. D., Irvine, J., Isard, P. A., Martin, B. R., Narin, F., & Stevens, K. (1988a). On-line approaches to measuring national scientific output: A cautionary tale. Science and Public Policy, 15(3), 153–161.Google Scholar
  3. Anderson, J., Collins, P. M. D., Irvine, J., Isard, P. A., Martin, B. R., Narin, F., & Stevens, K. (1988b). On-line approaches to measuring national scientific output: A cautionary tale. Science and Public Policy, 15(3), 153–161.Google Scholar
  4. Aziz, N. A., & Rozing, M. P. (2013). Profit (p)-index: The degree to which authors profit from co-authors. PLoS ONE, 8(4), e59814.CrossRefGoogle Scholar
  5. Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895–903.CrossRefGoogle Scholar
  6. Brandes, U. (2008). On variants of shortest-path betweenness centrality and their generic computation. Social Networks, 30(2), 136–145.MathSciNetCrossRefGoogle Scholar
  7. Braun, T., Glänzel, W., & Schubert, A. (1989). Assessing assessments of British science. Some facts and figures to accept or decline. Scientometrics, 15(3), 165–170.CrossRefGoogle Scholar
  8. Choi, S., Yang, J. S., & Park, H. W. (2015a). Quantifying the triple helix relationship in scientific research: Statistical analyses on the dividing pattern between developed and developing countries. Quality & Quantity, 49(4), 1381–1396.CrossRefGoogle Scholar
  9. Choi, S., Yang, J. S. W., & Park, H. W. (2015b). The triple helix and international collaboration in sciences. Journal of the Association for Information Science and Technology, 66(1), 201–212.CrossRefGoogle Scholar
  10. Dekker, D., Krackhardt, D., & Snijders, T. A. (2007). Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika, 72(4), 563–581.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Delgado, E., & Repiso, R. (2013). The impact of scientific journals of communication: Comparing Google Scholar metrics, Web of Science and Scopus. Comunicar, 41, 45–52.CrossRefGoogle Scholar
  12. Egghe, L. (2008). Mathematical theory of the h-and g-index in case of fractional counting of authorship. Journal of the American Society for Information Science and Technology, 59(10), 1608–1616.CrossRefGoogle Scholar
  13. Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.CrossRefGoogle Scholar
  14. Galam, S. (2010). Integrating multiple coauthorship in the quantitative evaluation of individual’s scientific records. Arxiv preprint arXiv:1007.3708.
  15. Garfield, E. (1979). Is citation analysis a legitimate evaluation tool? Scientometrics, 1(4), 359–375.CrossRefGoogle Scholar
  16. Gautam, P., Kodama, K., & Enomoto, K. (2014). Joint bibliometric analysis of patents and scholarly publications from cross-disciplinary projects: Implications for development of evaluative metrics. Journal of Contemporary Eastern Asia, 13(1), 19–37.CrossRefGoogle Scholar
  17. Gruzd, A., Staves, K., & Wilk, A. (2012). Connected scholars: Examining the role of social media in research practices of faculty using the UTAUT model. Computers in Human Behavior, 28(6), 2340–2350.CrossRefGoogle Scholar
  18. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. CA: University of California, Riverside. Retrieved July 1, 2013 from
  19. Holmberg, K. (2015). Altmetrics for information professionals: Past, present, and future. Waltham, MA: Chandos Publishing.Google Scholar
  20. Irvine, J., & Martin, B. R. (1986). Is Britain spending enough on science? Nature, 323, 591–594.CrossRefGoogle Scholar
  21. Irvine, J., Martin, B., Peacock, T., & Turner, R. (1985). Charting the decline of British science. Nature, 316, 587–590.CrossRefGoogle Scholar
  22. Khan, G. F., Moon, J. H., Park, H. W., Swar, B., & Rho, J. J. (2011). A socio-technical perspective on e-government issues in developing countries: A scientometrics approach. Scientometrics, 87(2), 267–286.CrossRefGoogle Scholar
  23. Kim, L., & Park, H. W. (2015). Diagnosing “collaborative culture” of biomedical science in South Korea: Misoriented knowledge, competition and failing collaboration. East Asian Science, Technology and Society: An International Journal., 9, 1–21.CrossRefGoogle Scholar
  24. King, G. (2011). Ensuring the data-rich future of the social sciences. Science, 331(6018), 719–721.CrossRefGoogle Scholar
  25. Korea Research Foundation. (2014). 2014 ECSAC-Korea Journal Editors Workshop. Daejeon: Korea Research Foundation.Google Scholar
  26. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: Chicago University Press.Google Scholar
  27. Kwon, K. S., Park, H. W., So, M. H., & Leydesdorff, L. (2012). Has globalization strengthened South Korea’s national research system? National and international dynamics of the Triple Helix of scientific coauthorship relationships in South Korea. Scientometrics, 90(1), 163–176.CrossRefGoogle Scholar
  28. Lee, K. (2014). Schumpeterian analysis of economic catch-up. Cambridge: Cambridge University Press.Google Scholar
  29. Lemarchand, G. A. (2012). The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973–2010). Research Policy, 41(2), 291–305.CrossRefGoogle Scholar
  30. Leydesdorff, L. (1988). Problems with the ‘measurement’ of national scientific performance. Science and Public Policy, 15(3), 149–152.Google Scholar
  31. Leydesdorff, L. (1989). The Science Citation Index and the measurement of national performance in terms of numbers of publications. Scientometrics, 17, 111–120.CrossRefGoogle Scholar
  32. Leydesdorff, L. (2015). The sciences are discursive constructs: The communication perspective as an empirical philosophy of science. In L. Cantoni & J. A. Danowski (Eds.), Communication and Technology (pp. 553–562). Berlin and Boston: De Gruyter Mouton.Google Scholar
  33. Leydesdorff, L., Park, H. W., & Wagner, C. (2014). International coauthorship relations in the Social Sciences Citation Index: Is internationalization leading the Network? Journal of the Association for Information Science and Technology, 65(10), 2111–2126.CrossRefGoogle Scholar
  34. Leydesdorff, L., & Shin, J. C. (2011). How to evaluate universities in terms of their relative citation impacts: Fractional counting of citations and the normalization of differences among disciplines. Journal of the American Society for Information Science and Technology, 62(6), 1146–1155.CrossRefGoogle Scholar
  35. Leydesdorff, L., Wagner, C., Park, H. W., & Adams, J. (2013). International collaboration in science: The global map and the network. El professional de la información., 22(1), 87–94.CrossRefGoogle Scholar
  36. Martin, B. R. (1991). The bibliometric assessment of UK scientific performance—A reply to Braun, Glänzel and Schubert. Scientometrics, 20, 333–357.CrossRefGoogle Scholar
  37. Mehmood, A., Choi, G. S., & von Feigenblatt, O. F., & Park, H. W. (2016 accepted). Proving ground for social network analysis in the emerging research area “Internet of Things” (IoT). Scientometrics. doi: 10.1007/s11192-016-1931-4.
  38. Moed, H. F. (2000). Bibliometric indicators reflect publication and management strategies. Scientometrics, 47(2), 323–346.CrossRefGoogle Scholar
  39. Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4(3), 265–277.CrossRefGoogle Scholar
  40. Morris, S. A. (2005). Unified Mathmatical Treatment of Complex Cascaded Bipartite Networks: The Case of Collections of Journal Papers. Oklahoma State University. Retrieved from Unpublished Ph.D. Thesis.
  41. Mosbah-Natanson, S., & Gingras, Y. (2013). The globalization of social sciences? Evidence from a quantitative analysis of 30 years of production, collaboration and citations in the social sciences (1980–2009). Current Sociology,. doi: 10.1177/0011392113498866.Google Scholar
  42. Narin, F. (1976). Evaluative bibliometrics: The use of publication and citation analysis in the evaluation of scientific activity. Washington, DC: National Science Foundation.Google Scholar
  43. Park, H. W., & Leydesdorff, L. (2010). Longitudinal trends in networks of university–industry–government relations in South Korea: The role of programmatic incentives. Research Policy, 39(5), 640–649.CrossRefGoogle Scholar
  44. Park, H. W., & Leydesdorff, L. (2013). Decomposing social and semantic networks in emerging “big data” research. Journal of Informetrics, 7(3), 756–765. doi: 10.1016/j.joi.2013.05.004.CrossRefGoogle Scholar
  45. Rana, S. (2012). Bibliometric analysis of output and visibility of science and technology in Singapore during 2000–2009. Webology, 9(1), Article 96.
  46. Shapiro, M., & Park, H. W. (2012). Regional development in South Korea: Accounting for research area in centrality and networks. Scientometrics, 90(1), 271–287.CrossRefGoogle Scholar
  47. Shapiro, M., So, M. H., & Park, H. W. (2010). Quantifying the national innovation system: Inter-regional collaboration networks in South Korea. Technology Analysis & Strategic Management, 22(7), 845–857.CrossRefGoogle Scholar
  48. Small, H., Sweeney, E., & Greenlee, E. (1985). Clustering the science citation index using co-citations II. Mapping science. Scientometrics, 8, 321–340.CrossRefGoogle Scholar
  49. So, M., Kim, J., Choi, S., & Park, H. W. (2015). Factors affecting citation networks in science and technology: Focused on non-quality factors. Quality & Quantity, 49(4), 1513–1530. doi: 10.1007/s11135-014-0110-z.CrossRefGoogle Scholar
  50. Song, M., Yang, C., & Tang, X. (2013). Detecting evolution of bioinformatics with a content and co-authorship analysis. SpringerPlus, 2(1), 186. doi: 10.1186/2193-1801-2-186.MathSciNetCrossRefGoogle Scholar
  51. Sun, J., & Jiang, C. (2014). Sino-South Korean Scientific collaboration based on co-authored SCI papers. Journal of Information Science Theory and Practice, 2(1), 48–61.MathSciNetCrossRefGoogle Scholar
  52. Tanksalvala, S. (20 October, 2014). Web of Science now includes expanded coverage of top Korean journals. Web of Sceicne.
  53. Thelwall, M. (2008). Extracting accurate and complete results from search engines: Case study Windows Live. Journal of the American Society for Information Science and Technology, 59(1), 38–50.CrossRefGoogle Scholar
  54. UNESCO. (2015). UNESCO Science report-towards 2030. Paris: UNESCO Publishing.Google Scholar
  55. van Liere, D. (2004). Interpretation of UCINET Output. Essex Summer School Version 1.0.Google Scholar
  56. Van Noorden, Richard. (2014). Online collaboration: Scientists and the social network. Nature, 512, 126–129.CrossRefGoogle Scholar
  57. Velez-Cuartas, G., Lucio-Arias, D., & Leydesdorff, L. (2016, forthcoming). Regional and global science: Latin American and Caribbean publications in the SciELO Citation Index and the Web of Science. El Profesional de la Información; preprint at arXiv:1510.02453.
  58. Wagner, C. S., Park, H. W., & Leydesdorff, L. (2015). The continuing growth of global cooperation networks in research: A conundrum for national governments. PLoS One, 10(7), e0131816. doi: 10.1371/journal.pone.0131816.CrossRefGoogle Scholar
  59. Waltman, L., & van Eck, N. J. (2015). Field-normalized citation impact indicators and the choice of an appropriate counting method. Journal of Informetrics, 9(4), 872–894.CrossRefGoogle Scholar
  60. Yang, C. H., Park, H. W., & Heo, J. (2010). A network analysis of interdisciplinary research relationships: The Korean government’s R&D grant program. Scientometrics, 83(1), 77–92.CrossRefGoogle Scholar
  61. Yoon, J. W., & Park. H. W. (2016 Accepted). Triple helix dynamics of South Korea’s innovation system: A network analysis of inter-regional technological collaborations. Quality & Quantity. doi: 10.1007/s11135-016-0346-x.
  62. Yoon, J., Yang, J. S., & Park, H. W. (2015). Triple helix patterns and dynamics in Korea–China scientific collaborations. Daegu, Korea: Presented to the DISC.Google Scholar
  63. Zheng, J., Zhao, Z. Y., Zhang, X., Chen, D. Z., Huang, M. H., Lei, X. P., et al. (2012). International scientific and technological collaboration of China from 2004 to 2008: A perspective from paper and patent analysis. Scientometrics, 91, 65–80.CrossRefGoogle Scholar
  64. Zhou, P. & Leydesdorff, L. (2016). A comparative study of the citation impact of Chinese journals with priority funding. Presented to 1st international symposium on webometrics, informetrics & scientometrics (ISWIS) 17 October, 2015 Zhejiang University, Hangzhou, China. Frontiers in Research Metrics and Analytics.Google Scholar
  65. Zhou, Q., Leng, F., & Leydesdorff, L. (2015). The reflection of hierarchical cluster analysis of co-occurrence matrices in SPSS. Chinese Journal of Library and Information Science, 8(2), 11–24.Google Scholar
  66. Zitt, M. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing and Management, 42(6), 1513–1531.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2016

Authors and Affiliations

  1. 1.Department of Media and Communication, Interdisciplinary Program of East Asian Cultural Studies, Interdisciplinary Program of Digital Convergence BusinessYeungnam UniversityGyeongsan-siSouth Korea
  2. 2.National Research Foundation of KoreaSeoulSouth Korea
  3. 3.Amsterdam School of Communication Research (ASCoR)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations