Skip to main content
Log in

The emergent dynamics of a technological research topic: the case of graphene

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Technological research topics might enjoy dramatic increases in popularity, regardless of yet unclear commercialization prospects. The article analyzes the example of graphene, an advanced material, first demonstrated in 2004, which benefited from the visibility and expectations of policy makers, investors and R&D performers. The bibliometric analysis helps better understand the initial era of ferment in technology cycle, before graphene’s technical and commercial feasibility was confirmed. It offers insights into the underlying dynamics, which accompanies the topic’s emergence and the subsequent hype. Exponential growth in article counts is contrasted with decreasing citations per article and shares of highly-cited publications. The research field’s growing complexity is demonstrated by decomposing the discourse into publications concerning manufacturing graphene, its characterization and potential applications in non-electronics areas of health, environment and energy. Activities of publication outlets are traced, with a small number of journals accounting for the majority of publications and citations, and gradual increases in graphene’s presence in individual journals. International co-authorship patterns evolve over time, and while the network density and the average betweenness centrality of actors increase, the international concentration was found to follow a U-shaped pattern, initially promoting the field’s openness, but later making it less accessible, so that only some researchers benefit from this “window of opportunity”. The observed regularities follow a fashion-like pattern, with researchers joining the bandwagon to benefit from the topic’s popularity. The timing of entry into an emerging research field is important for maximizing the scientific impact of researchers, institutions, journals and countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5, 594–607.

    Article  Google Scholar 

  • Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6, 403–412.

    Article  Google Scholar 

  • Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology Review, 80(7), 40–47.

    Google Scholar 

  • Abrahamson, E. (1991). Managerial fads and fashions: The diffusion and rejection of innovations. Academy of Management Review, 16(3), 586–612.

    Google Scholar 

  • Abrahamson, E. (1996). Management fashion. Academy of Management Review, 21(1), 254–285.

    Google Scholar 

  • Abrahamson, E., & Fairchild, G. (1999). Management fashion: Lifecycles, triggers, and collective learning processes. Administrative Science Quarterly, 44, 708–740.

    Article  Google Scholar 

  • Adams, J. (2005). Early citation counts correlate with accumulated impact. Scientometrics, 63, 567–581.

    Article  Google Scholar 

  • Arora, S. K., Youtie, J., Shapira, Ph, Gao, L., & Ma, T. (2013). Entry strategies in an emerging technology: A pilot web-based study of graphene firms. Scientometrics, 95(3), 1189–1207.

    Article  Google Scholar 

  • Baglieri, D., Cesaroni, F., & Orsi, L. (2014). Does the nano-patent ‘gold rush’ lead to entrepreneurial-driven growth? Some policy lessons from China and Japan. Technovation, 34, 746–763.

    Article  Google Scholar 

  • Banal-Estañol, A., Jofre-Bonet, M., & Lawson, C. (2015). The double-edged sword of industry collaboration: Evidence from engineering academics in the UK. Research Policy, 44, 1160–1175.

    Article  Google Scholar 

  • Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

    Article  MathSciNet  MATH  Google Scholar 

  • Benders, J., van den Berg, R. J., & van Bijsterveld, M. (1998). Hitch-hiking on a hype: Dutch consultants engineering re-engineering. Journal of Organizational Change, 11(3), 201–215.

    Article  Google Scholar 

  • Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (2009). Scientific discovery and topological transitions in collaboration networks. Journal of Informetrics, 3, 210–221.

    Article  Google Scholar 

  • Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chávez, C., & Wojick, D. E. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495–518.

    Article  Google Scholar 

  • Boehm, H. P. (2010). Graphene—How a laboratory curiosity suddenly became extremely interesting. Angewandte Chemie International Edition, 49, 9332–9335.

    Article  Google Scholar 

  • Bonaccorsi, A. (2008). Search regimes and the industrial dynamics of science. Minerva, 46, 285–315.

    Article  Google Scholar 

  • Bonaccorsi, A., & Vargas, J. (2010). Proliferation dynamics in new sciences. Research Policy, 39, 1034–1050.

    Article  Google Scholar 

  • Bordons, M., Gómez, I., Fernández, M. T., Zulueta, M. A., & Méndez, A. (1996). Local, domestic and international scientific collaboration in biomedical research. Scientometrics, 37(2), 279–295.

    Article  Google Scholar 

  • Bordons, M., Gonzáles-Albo, B., & Aparicio, J. (2015). The influence of R&D intensity of countries on the impact of international collaborative research: Evidence from Spain. Scientometrics, 102, 1385–1400.

    Article  Google Scholar 

  • Bort, S., & Kieser, A. (2011). Fashion in organization theory: An empirical analysis of the diffusion of theoretical concepts. Organization Studies, 32(5), 655–681.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., Small, H., & Ungar, L. (2014). Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science. Journal of Engineering and Technology Management, 32, 147–159.

    Article  Google Scholar 

  • Bresciani, S., Eppler, M.J. (2008). Gartner’s magic quadrant and hype cycle. Collaborative Knowledge Visualization Case Study Series, 2. http://www.knowledge-communication.org/pdf/gartner-case-study-inspection.pdf. Accessed 17 July 2015.

  • Callon, M. (1992). The dynamics of techno-economic networks. In R. Coombs, P. Saviotti, & V. Walsh (Eds.), Technological change and company strategies: Economic and sociological perspectives (pp. 72–102). New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Calvert, J. (2006). What’s special about basic research? Science, Technology and Human Values, 31(2), 199–220.

    Article  MathSciNet  Google Scholar 

  • Chappin, E. J. L., & Ligtvoet, A. (2014). Transition and transformation: A bibliometric analysis of two scientific networks researching socio-technical change. Renewable and Sustainable Energy Reviews, 30, 715–723.

    Article  Google Scholar 

  • Chen, C., Chen, Y., Horowitz, M., Hou, H., Liu, Z., & Pellegrino, D. (2009). Towards an explanatory and computational theory of scientific discovery. Journal of Informetrics, 3(3), 191–209.

    Article  Google Scholar 

  • Ciraci, S., Dag, S., Yildirim, T., Gülseren, O., & Senger, R. T. (2004). Functionalized carbon nanotubes and device applications. Journal of Physics: Condensed Matter, 16(29), R901–R960.

    Google Scholar 

  • Cohen, M. D., March, J. G., & Olsen, J. P. (1972). A garbage can model of organizational choice. Administrative Science Quarterly, 17(1), 1–25.

    Article  Google Scholar 

  • Colapinto, J. (2014). Material question. Graphene may be the most remarkable substance ever discovered. But what’s it for? New Yorker. http://www.newyorker.com/magazine/2014/12/22/material-question. Accessed 17 July 2015.

  • Crane, D. (1969). Fashion in science: Does it exist? Social Problems, 16(4), 433–441.

    Article  Google Scholar 

  • Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73, 981–1012.

    Article  Google Scholar 

  • DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48(2), 147–160.

    Article  Google Scholar 

  • Dreyer, D. R., Ruoff, R. S., & Bielawski, Ch. W. (2010). From conception to realization: A historical account of graphene and some perspectives for its future. Angewandte Chemie International Edition, 49, 9336–9344.

    Article  Google Scholar 

  • Etxebarria, G., Gómez-Uranga, M., & Barrutia, J. (2012). Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology. Scientometrics, 91(1), 253–268.

    Article  Google Scholar 

  • Etxebarria, G., Gómez-Uranga, M., Zabala-Iturriagagoitia, J. M., Barrutia, J. (2013). Potential applications of carbon nanotubes and graphene: Marking the direction of scientific research. http://ssrn.com/abstract=2205815. Accessed 17 July 2015.

  • Fell, H. B. (1960). Fashion in cell biology. Science, 132, 1625–1627.

    Article  Google Scholar 

  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.

    Article  Google Scholar 

  • Gonzales-Brambila, C. N., Veloso, F. M., & Krackhardt, D. (2013). The impact of network embeddedness on research output. Research Policy, 42, 1555–1567.

    Article  Google Scholar 

  • Gordon, M. D. (1980). A critical reassessment of inferred relations between multiple authorship, scientific collaboration, the production of papers and their acceptance for publication. Scientometrics, 2(3), 193–201.

    Article  Google Scholar 

  • Guan, J., & Ma, N. (2007). China’s emerging presence in nanoscience and nanotechnology. A comparative bibliometric study of several nanoscience ‘giants’. Research Policy, 36, 880–886.

    Article  Google Scholar 

  • Hoekman, J., Frenken, K., & Tijssen, R. J. W. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39, 662–673.

    Article  Google Scholar 

  • Intellectual Property Office (2013). Graphene. The worldwide patent landscape in 2013. Newport: The Intellectual Property Office. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/312676/informatics-graphene-2013.pdf. Accessed 17 July 2015.

  • IUPAC (1997). Graphene layer. Compendium of chemical terminology (the “Gold Book”) (2nd ed.). Oxford: Blackwell Scientific Publications. http://goldbook.iupac.org/G02683.html. Accessed 17 July 2015.

  • Jamasb, T., & Pollitt, M. G. (2011). Electricity sector liberalisation and innovation: An analysis of the UK’s patenting activities. Research Policy, 40, 309–324.

    Article  Google Scholar 

  • Järvenpää, H. M., Mäkinen, S. J., & Seppänen, M. (2011). Patent and publishing activity sequence over a technology’s life cycle. Technological Forecasting and Social Change, 78, 283–293.

    Article  Google Scholar 

  • Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26, 1–18.

    Article  Google Scholar 

  • Kieser, A. (1996). Moden und Mythen des Organisierens. Die Betriebswirtschaft, 56(1), 21–39.

    Google Scholar 

  • Klincewicz, K. (2006). Management fashions: Turning bestselling ideas into objects and institutions. New Brunswick: Transaction Publishers.

    Google Scholar 

  • Kuhn, Th. (1970). The structure of scientific revolutions (2nd ed.). Chicago: The University of Chicago Press.

    Google Scholar 

  • Li, E. Y., Liao, Ch H, & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42, 1515–1530.

    Article  Google Scholar 

  • Lv, P. H., Wang, G.-F., Wan, Y., Liu, J., Liu, Q., & Ma, F.-Ch. (2011). Bibliometric trend analysis on global graphene research. Scientometrics, 88(2), 399–419.

  • McFadyen, M. A., & Cannella, A. A, Jr. (2004). Social capital and knowledge creation: Diminishing returns of the number and strength of exchange. The Academy of Management Journal, 47(5), 735–746.

    Article  Google Scholar 

  • Melin, G., & Persson, O. (1996). Studying research collaboration using co-authorships. Scientometrics, 36(3), 363–377.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Meyer, J. W., & Rowan, B. (1977). Institutionalized organizations: Formal structure as myth and ceremony. American Journal of Sociology, 83(2), 340–363.

    Article  Google Scholar 

  • Milanez, D. H., Schiavi, M. T., do Amaral, R. M., de Faria, L. I. L., & Gregolin, J. A. R. (2013). Development of carbon-based nanomaterials indicators using the analytical tools and data provided by the Web of Science database. Materials Research, 16(6), 1282–1293.

    Article  Google Scholar 

  • Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy, 36, 893–903.

    Article  Google Scholar 

  • Motoyama, Y., & Eisler, M. N. (2011). Bibliometry and nanotechnology: A meta-analysis. Technological Forecasting and Social Change, 78, 1174–1182.

    Article  Google Scholar 

  • Munari, F., & Toschi, L. (2014). Running ahead in the nanotechnology gold rush. Strategic patenting in emerging technologies. Technological Forecasting and Social Change, 83, 194–207.

    Article  Google Scholar 

  • Nature Materials. (2007). Graphene calling: Editorial. Nature Materials, 6(3), 169.

  • Nelson, A., Earle, A., Howard-Grenville, J., Haack, J., & Young, D. (2014). Do innovation measures actually measure innovation? Obliteration, symbolic adoption, and other finicky challenges in tracking innovation diffusion. Research Policy, 43, 927–940.

    Article  Google Scholar 

  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Article  Google Scholar 

  • O’Leary, D. E. (2009). Gartner’s hype cycle and information system research issues. International Journal of Accounting Information Systems, 9(4), 240–252.

    Article  Google Scholar 

  • Okubo, Y., Miquel, J. F., Frigoletto, L., & Doré, J. C. (1992). Structure of international collaboration in science: Typology of countries through multivariate techniques using a link indicator. Scientometrics, 25(2), 321–351.

    Article  Google Scholar 

  • Porter, A. L., & Cunningham, S. W. (2004). Tech mining. Exploiting new technologies for competitive advantage. Hoboken: Wiley.

    Book  Google Scholar 

  • Raub, S., & Rüling, Ch C. (2001). The knowledge management tussle—Speech communities and rhetorical strategies in the development of knowledge management. Journal of Information Technology, 16, 113–130.

    Article  Google Scholar 

  • Rigby, J., & Edler, J. (2005). Peering inside research networks: Some observations on the effect of the intensity of collaboration on the variability of research quality. Research Policy, 34, 784–794.

    Article  Google Scholar 

  • Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.

    Google Scholar 

  • Schiling, M. A. (1998). Technological lockout: An integrative model of the economic and strategic factors driving technology success and failure. Academy of Management Review, 23(2), 267–284.

    Google Scholar 

  • Shapira, Ph, Youtie, J., & Arora, S. (2012). Early patterns of commercial activity in graphene. Journal of Nanoparticle Research, 14(4), 1–15.

    Article  Google Scholar 

  • Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43, 1450–1467.

    Article  Google Scholar 

  • Sooryamoorthy, R. (2009). Do types of collaboration change citation? Collaboration and citation patterns of South African science publications. Scientometrics, 81(1), 177–193.

    Article  Google Scholar 

  • Swanson, E. B., & Ramiller, N. C. (1997). The organizing vision in information systems innovation. Organization Science, 8(5), 458–474.

    Article  Google Scholar 

  • Tushman, M. L., & Anderson, Ph. (1986). Technological discontinuities and organizational environments. Administrative Science Quarterly, 31(3), 439–465.

    Article  Google Scholar 

  • Wallace, P. R. (1947). The band theory of graphite. Physical Review, 71(9), 622–634.

    Article  MATH  Google Scholar 

  • Watts, R. J., & Porter, A. L. (1997). Innovation forecasting. Technological Forecasting and Social Change, 56, 25–47.

    Article  Google Scholar 

  • Winnink, J. J., & Tijssen, R. J. W. (2015). Early stage identification of breakthroughs at the interface of science and technology: Lessons drawn from a landmark publication. Scientometrics, 102(1), 113–134.

    Article  Google Scholar 

  • Xie, Zh, & Miyazaki, K. (2013). Evaluating the effectiveness of keyword search strategy for patent identification. World Patent Information, 35, 20–30.

    Article  Google Scholar 

  • Yeo, W., Kim, S., Lee, J. M., & Kang, J. (2014). Aggregative and stochastic model of main path identification: a case study on graphene. Scientometrics, 98(1), 633–655.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Klincewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klincewicz, K. The emergent dynamics of a technological research topic: the case of graphene. Scientometrics 106, 319–345 (2016). https://doi.org/10.1007/s11192-015-1780-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1780-6

Keywords

JEL Classification

Navigation