Skip to main content
Log in

Research trends and hotspots in soil erosion from 1932 to 2013: a literature review

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

According to the publications related to soil erosion in the SCI database from 1932 to 2013, this study reveals scientific outputs, main subject categories, geographical distribution, and research hotspots in soil erosion studies, which may be considered a potential guide for future research. The annual number of publications showed an increasing trend over the past 80 years, with an especially rapid increase after 1990. Agriculture, environmental sciences and ecology, geology, and water resources were four major categories. Interdisciplinary research in soil erosion is becoming more common. The soil erosion research was mainly distributed across the USA and Europe before 2001 and boomed in China and Australia after 2001. USA was the largest contributor to global soil erosion research. China is focusing increasing attention on soil erosion research in the last decade, behind the USA. The Chinese Academy of Sciences is the most productive institute, followed by USDA Agricultural Research Service and Katholieke Universiteit Leuven. A keyword analysis confirmed keen interest in sediment yield, soil organic carbon, and phosphorus; indicated that rainfall runoff, climate change, agricultural tillage, and land use change were the leading causes of soil erosion; revealed the important role of GIS, remote sensing, model, and Cs-137 measurement; and found that the Loess Plateau of north-central China was an area of research focus. Through co-citation analysis, soil erosion research mainly focuses on three aspects: soil erosion simulation based on models, soil erosion estimation based on Cs-137 technique, and effects of soil erosion on the environment and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Angima, S. D., Stott, D. E., O’Neill, M. K., Ong, C. K., & Weesies, G. A. (2003). Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment, 97(1–3), 295–308.

    Article  Google Scholar 

  • Chen, C. M. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America, 101, 5303–5310.

    Article  Google Scholar 

  • Cheng, S. L., Fang, H. J., Zhu, T. H., Zheng, J. J., Yang, X. M., Zhang, X. P., et al. (2010). Effects of soil erosion and deposition on soil organic carbon dynamics at a sloping field in Black Soil region, Northeast China. Soil Science and Plant Nutrition, 56(4), 521–529.

    Article  Google Scholar 

  • Dang, Y. A., Ren, W., Tao, B., Chen, G. S., Lu, C. Q., Yang, J., et al. (2014). Climate and land use controls on soil organic carbon in the Loess Plateau Region of China. Plos One, 9(5), e95548.

  • de Jong, S. M., Paracchini, M. L., Bertolo, F., Folving, S., Megier, J., & de Roo, A. P. J. (1999). Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data. Catena, 37(3–4), 291–308.

    Article  Google Scholar 

  • DeLong, C., Cruse, R., & Wiener, J. (2015). The soil degradation paradox: Compromising our resources when we need them the most. Sustainability, 7(1), 866–879.

    Article  Google Scholar 

  • DeRoo, A. P. J., Wesseling, C. G., & Ritsema, C. J. (1996). LISEM: A single-event physically based hydrological and soil erosion model for drainage basins. 1. Theory, input and output. Hydrological Processes, 10(8), 1107–1117.

    Article  Google Scholar 

  • Duley, F. L., & Hays, O. E. (1932). The effect of the degree of slope on run-off and soil erosion. Journal of Agricultural Research, 45, 0349–0360.

    Google Scholar 

  • Edwards, W. M., & Owens, L. B. (1991). Large storm effects on total soil-erosion. Journal of Soil and Water Conservation, 46(1), 75–78.

    Google Scholar 

  • Even, A. G., Occhietti, S., & Fechner, K. (2014). Main phases of soil genesis, erosion and anthropisation during the second half of the holocene in Lorraine (Eastern France). Archeosciences-Revue D Archeometrie, 38, 7–29.

    Google Scholar 

  • Fu, J. Y., Zhang, X., Zhao, Y. H., Chen, D. Z., & Huang, M. H. (2012). Global performance of traditional Chinese medicine over three decades. Scientometrics, 90(3), 945–958.

    Article  Google Scholar 

  • Gao, X. F., Xie, Y., Liu, G., Liu, B. Y., & Duan, X. W. (2015). Effects of soil erosion on soybean yield as estimated by simulating gradually eroded soil profiles. Soil & Tillage Research, 145, 126–134.

    Article  Google Scholar 

  • Genis, A., Vulfson, L., & Ben-Asher, J. (2013). Combating wind erosion of sandy soils and crop damage in the coastal deserts: Wind tunnel experiments. Aeolian Research, 9, 69–73.

    Article  Google Scholar 

  • Gharibreza, M., Raj, J. K., Yusoff, I., Othman, Z., Tahir, W., & Ashraf, M. A. (2013). Land use changes and soil redistribution estimation using Cs-137 in the tropical Bera Lake catchment, Malaysia. Soil & Tillage Research, 131, 1–10.

    Article  Google Scholar 

  • Kagabo, D. M., Stroosnijder, L., Visser, S. M., & Moore, D. (2013). Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda. Soil & Tillage Research, 128, 23–29.

    Article  Google Scholar 

  • Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12(6), 519–539.

    Article  Google Scholar 

  • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450.

    Article  Google Scholar 

  • Le, M. H., Cordier, S., Lucas, C., & Cerdan, O. (2015). A faster numerical scheme for a coupled system modeling soil erosion and sediment transport. Water Resources Research, 51(2), 987–1005.

    Article  Google Scholar 

  • Lu, D., Li, G., Valladares, G. S., & Batistella, M. (2004). Mapping soil erosion risk in Rondonia, Brazilian Amazonia: Using RULSE, remote sensing and GIS. Land Degradation and Development, 15(5), 499–512.

    Article  Google Scholar 

  • Ma, L., Bu, Z. H., Wu, Y. H., Kerr, P. G., Garre, S., Xia, L. Z., et al. (2014). An integrated quantitative method to simultaneously monitor soil erosion and non-point source pollution in an intensive agricultural area. Pedosphere, 24(5), 674–682.

    Article  Google Scholar 

  • Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129.

    Article  Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., et al. (1998). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527–544.

    Article  Google Scholar 

  • Mullan, D. (2013). Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the potential on-site and off-site problems. Catena, 109, 234–246.

    Article  Google Scholar 

  • Nearing, M. A., Foster, G., Lane, L., & Finkner, S. (1989). A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions of the ASAE, 32(5), 1587–1593.

    Article  Google Scholar 

  • Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., et al. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena, 61(2–3), 131–154.

    Article  Google Scholar 

  • Nearing, M. A., Pruski, F. F., & O’Neal, M. R. (2004). Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation, 59(1), 43–50.

    Google Scholar 

  • Nederhof, A. J. (2006). Bibliometric monitoring of research performance in the social sciences and the humanities: A review. Scientometrics, 66(1), 81–100.

    Article  MathSciNet  Google Scholar 

  • Nie, X. J., Zhao, T. Q., & Qiao, X. N. (2013). Impacts of soil erosion on organic carbon and nutrient dynamics in an alpine grassland soil. Soil Science and Plant Nutrition, 59(4), 660–668.

    Article  Google Scholar 

  • Pan, J. H., & Wen, Y. (2014). Estimation of soil erosion using RUSLE in Caijiamiao watershed, China. Natural Hazards, 71(3), 2187–2205.

    Article  Google Scholar 

  • Paroissien, J. B., Darboux, F., Couturier, A., Devillers, B., Mouillot, F., Raclot, D., et al. (2015). A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). Journal of Environmental Management, 150, 57–68.

    Article  Google Scholar 

  • Patel, A. (2012). Mountain erosion and mitigation: Global state of art. Environmental Earth Sciences, 66(6), 1631–1639.

    Article  Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123.

    Article  Google Scholar 

  • Pritchar, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil-erosion and sediment accumulation rates and patterns—A review. Journal of Environmental Quality, 19(2), 215–233.

    Article  Google Scholar 

  • Ritchie, J. C., Spraberr, J. A., & McHenry, J. R. (1974). Estimating soil erosion from redistribution of fallout Cs-137. Soil Science Society of America Journal, 38(1), 137–139.

    Article  Google Scholar 

  • Schmoch, U., & Schubert, T. (2008). Are international co-publications an indicator for quality of scientific research? Scientometrics, 74(3), 361–377.

    Article  Google Scholar 

  • Shi, Z. H., Cai, C. F., Ding, S. W., Wang, T. W., & Chow, T. L. (2004). Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China. Catena, 55(1), 33–48.

    Article  Google Scholar 

  • Tang, Q., Xu, Y., Bennett, S. J., & Li, Y. (2015). Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences, 73(4), 1715–1724.

    Article  Google Scholar 

  • Walling, D. E., & He, Q. (1999). Improved models for estimating soil erosion rates from cesium-137 measurements. Journal of Environmental Quality, 28(2), 611–622.

    Article  Google Scholar 

  • Wang, B., Zhang, G. H., Shi, Y. Y., & Zhang, X. C. (2014). Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena, 116, 51–59.

    Article  Google Scholar 

  • Wickama, J., Masselink, R., & Sterk, G. (2015). The effectiveness of soil conservation measures at a landscape scale in the West Usambara highlands, Tanzania. Geoderma, 241, 168–179.

    Article  Google Scholar 

  • Wischmeier, W. H. (1976). Use and misuse of the universal soil loss equation. Journal of Soil and Water Conservation, 31(1), 5–9.

    Google Scholar 

  • Xiao, L. L., Yang, X. H., Chen, S. X., & Cai, H. Y. (2015). An assessment of erosivity distribution and its influence on the effectiveness of land use conversion for reducing soil erosion in Jiangxi, China. Catena, 125, 50–60.

    Article  Google Scholar 

  • Xu, Y. Q., Peng, J., & Shao, X. M. (2014). Assessment of soil erosion using RUSLE and GIS: A case study of the Maotiao River watershed, Guizhou Province, China (Retraction of vol 56, pg 1643, 2009). Environmental Earth Sciences, 72(6), 2217.

    Article  Google Scholar 

  • Xu, L. F., Xu, X. G., & Meng, X. W. (2013). Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. Catena, 100, 74–82.

    Article  Google Scholar 

  • Yang, D. W., Kanae, S., Oki, T., Koike, T., & Musiake, K. (2003). Global potential soil erosion with reference to land use and climate changes. Hydrological Processes, 17(14), 2913–2928.

    Article  Google Scholar 

  • Yang, Y., Wu, M. Z., & Cui, L. (2012). Integration of three visualization methods based on co-word analysis. Scientometrics, 90(2), 659–673.

    Article  Google Scholar 

  • Zhang, L., Wang, M. H., Hu, J., & Ho, Y. S. (2010). A review of published wetland research, 1991–2008: Ecological engineering and ecosystem restoration. Ecological Engineering, 36(8), 973–980.

    Article  Google Scholar 

  • Zhao, L. M., & Zhang, Q. P. (2011). Mapping knowledge domains of Chinese digital library research output, 1994–2010. Scientometrics, 89(1), 51–87.

    Article  Google Scholar 

  • Zhuang, Y. H., Liu, X. J., Nguyen, T., He, Q. Q., & Hong, S. (2013). Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics, 96(1), 203–219.

    Article  Google Scholar 

  • Zhuang, F., Wang, Z., & Yang, Q. (2008). The retrospection and prospect on soil erosion research in China. Chinese Journal of Nature, 30(1), 12–16.

    Google Scholar 

Download references

Acknowledgments

This study is funded by the Youth Chenguang Project of Science and Technology of Wuhan City (No. 2014070404010228), the National Natural Science Foundation of China (Nos. 51409240 and 41471433), and the Natural Science Foundation of Hubei Province (2014CFB458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y., Du, C., Zhang, L. et al. Research trends and hotspots in soil erosion from 1932 to 2013: a literature review. Scientometrics 105, 743–758 (2015). https://doi.org/10.1007/s11192-015-1706-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1706-3

Keywords

Navigation