Skip to main content

Burning a Candle in a Vessel, a Simple Experiment with a Long History

Abstract

The experiment in which a candle is burned inside an inverted vessel partially immersed in water has a history of more than 2,200 years, but even nowadays it is common that students and teachers relate the change in volume of the enclosed air to its oxygen content. Contrary to what many people think, Lavoisier concluded that any change in volume in this experiment is negligible; moreover, the explanation relating oxygen consumption in the air with its change in volume is known to be wrong. In this work we briefly review the history behind the candle experiment and its relationship with some typical erroneous explanations. One of the key factors behind Lavoisier’s success was the use of experiments carefully designed to test different hypotheses. Following these steps, we performed several closed volume experiments where the candle wick was replaced by a capillary stainless steel cylinder supported and heated by a nichrome filament connected to an external power supply. Our recorded experiments are displayed as web pages, designed with the purpose that the reader can easily visualize and analyze modern versions of Lavoisier’s experiments. These experiments clearly show an initial phase of complete combustion, followed by a phase of incomplete combustion with elemental carbon or soot rising to the top of the vessel, and a final phase where the hot artificial wick only evaporates a white steam of wax that cannot ignite because no oxygen is left in the closed atmosphere. After either a complete or incomplete combustion of the oxygen, our experiments show that the final gas volume is nearly equal to the initial air volume.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. This is a reproduction of a book published before 1923, a copy of the 1912 edition is available online at http://www.archive.org/details/compositionofatm00benerich.

  2. The experiment can be visualized in the web page http://laplace.ucv.cl/TrackMovingObjects/Gallery/Candle/Candle_demonstration/movimiento.html. After all the images are loaded you must press the Play button or advance to the next or previous frame using the arrow keys. It is also possible to move the mouse over the boxes of the navigation bar located below the central image to advance forwards or backwards. This experiment was recorded at 10 frames per second (fps).

  3. Lucio Russo in his book The Forgotten Revolution traced the origins of the modern scientific method back to the Hellenistic Scientists. He quotes for example a revealing phrase from Philo: “That everything cannot be accomplished through pure thought and the methods of mechanics, but much is found also by experiment….”

  4. Lavoisier (1777): j’ai donc résolu de prendre toutes les précautions possibles pour obtenir un résultat plus certain, plus indépendant de toute erreur, et voici l’expérience qui m’a paru devoir être la plus décisive. J’ai assujetti, au milieu d’une capsule de verre, une petite bougie; j’ai fixé à la partie supérieure de la mèche un petit morceau de phosphore de Kunckel, du poids d’un sixième de grain environ; après quoi j’ai placé la capsule sur un bain de mercure, et je l’ai recouverte avec une cloche de cristal; enfin, avec un siphon de verre qui communiquait de l’intérieur de la cloche à l’extérieur, j’ai élevé, en suçant, le mercure jusqu’à une certaine hauteur; que j’ai marquée très-exactement avec une bande de papier collée. Lorsque tout a été ainsi disposé, j’ai fait rougir une petite tringle de fer que j’avais recourbée pour cet objet, puis je l’ai passée par-dessous la cloche à travers le mercure pour aller toucher le haut de la bougie et enflammer le petit morceau de phosphore.

  5. Lavoisier (1777): ce qui peut être regardé comme absolument nul, surtout si l’on fait attention qu’un très-léger changement de la température du lieu où se faisait l’expérience a pu produire cette différence.

  6. Click on the movimiento.html web page in http://laplace.ucv.cl/TrackMovingObjects/Gallery/Candle/ Candle_artificial_wick_partial_combustion/. This experiment was recorded at 10 fps.

  7. By clicking on a point of the image (for example the water level) the coordinates of that point will be stored by the web page software and the next image will be displayed to continue collecting data. Afterwards clicking on the 'VER DATOS' button a new window will be opened displaying the collected data.

  8. Click on the movimiento.html web page in http://laplace.ucv.cl/TrackMovingObjects/Gallery/Candle/ Candle_artificial_wick_total_combustion_1/. This experiment was recorded at 5 fps.

  9. Click on the movimiento.html web page in http://laplace.ucv.cl/TrackMovingObjects/Gallery/Candle/ Candle_artificial_wick_total_combustion_2/. This experiment was recorded at 5 fps.

  10. Click on the movimiento.html web page in http://laplace.ucv.cl/TrackMovingObjects/Gallery/Candle/ Candle_closed_volume_focused_light/.

References

  • Benedict, F. G. (2010). The composition of the atmosphere with special reference to its oxygen content. Nabu Press. See also http://www.archive.org/details/compositionofatm00benerich, Accessed 30 July 2010.

  • Birk, J. P., & Lawson, A. E. (1999). The persistence of the candle-and-cylinder misconception. Journal of Chemical Education, 76(9), 914–916.

    Article  Google Scholar 

  • Caplan, J. B., Gerritsen, H. J., & LeDell, J. S. (1994). The hidden complexities of a “simple” experiment. Physics Teacher, 32(5), 310–314.

    Article  Google Scholar 

  • Faraday, M. (1978). The chemical history of a candle. Atlanta, Georgia: Cherokee Pub. Co.

    Google Scholar 

  • Fowles, G. (1960). Lecture experiments in chemistry. New York: Basic Books.

    Google Scholar 

  • Glantz, J. (1963). Demonstration notes: Oxygen in air. Journal of Chemical Education, 40, A477.

    Article  Google Scholar 

  • Gordon, J., & Chancey, K. (2005). The determination of the percent of oxygen in air using a gas pressure sensor. Journal of Chemical Education, 82(2), 286–287.

    Article  Google Scholar 

  • Jastrow J. (Ed.) (1936). The story of human error. London: D. Appleton-Century Company. (A preview is available at http://books.google.cl/books?id=tRUO45YfCHwC, Accessed 30 July 2010).

  • JCE staff. (2001). Just breathe: The oxygen content of air. Journal of Chemical Education, 78, 512A.

    Google Scholar 

  • Knowles, W. E. (1966). A history of the thermometer and its use in meteorology. Baltimore, Maryland: The Johns Hopkins Press, p. 8. (Translated from Le opere di Galileo Galilei, vol XVII, p. 377. See also: The Galileo Project, http://galileo.rice.edu/sci/instruments/thermometer.html). Accessed 30 July 2010.

  • Krnel, D., & Glăzar, S. (2001). Experiment with a candle without a candle. Journal of Chemical Education, 78(7), 914.

    Article  Google Scholar 

  • Lavoisier, A. (1777). Mémoire sur la combustion des chandelles dans l’air atmosphérique, et dans l’air éminemment respirable. Mémoires de l’Académie des sciences, année 1777, 195. Available online at http://www.lavoisier.cnrs.fr/memoires2.html, Accessed 30 July 2010.

  • Lavoisier, A. (1789). Traité élémentaire de chimie. Paris: Cuchet. Available online at http://www.lavoisier.cnrs.fr/livres.html, Accessed 29 Dec 2010.

  • MacNeil, J., & Volaric, L. (2003). Incomplete combustion with candle flames: A guided-inquiry experiment in the first-year chemistry lab. Journal of Chemical Education, 80(3), 302–304.

    Article  Google Scholar 

  • New Scientist. (1998). The last word, New Scientist (2136, May 30 1998) 105.

  • Peckham, G. D. (1993). A new use for the candle and tumbler myth. Journal of Chemical Education, 70(12), 1008–1009.

    Article  Google Scholar 

  • Russo, L. (2004). The forgotten revolution: How science was born in 300 BC and why it had to be reborn. Berlin: Springer.

    Google Scholar 

  • Vera, F., & Romanque, C. (2009). Another way of tracking moving objects using short video clips. Physics Teacher, 47(6), 370–373.

    Article  Google Scholar 

  • Vitz, E. (2000). Paradoxes, puzzles, and pitfalls of incomplete combustion demonstrations. Journal of Chemical Education, 77(8), 1011–1013.

    Article  Google Scholar 

  • Wolfrum, J. (2001). Introductory lecture: Advanced laser spectroscopy in combustion chemistry: From elementary steps to practical devices. Faraday Discussions, 119(1), 1–26.

    Google Scholar 

  • Woodcroft, B. (Translator) (1851). The pneumatics of Hero of Alexandria. London: Taylor Walton and Maberly. Available online at http://www.history.rochester.edu/steam/hero/, Accessed 30 July 2010.

Download references

Acknowledgments

We would like to acknowledge financial support from Fondo de Fomento al Desarrollo Científico y Tecnológico (FONDEF Project TE10I012), Fondo de Desarrollo Científico y Tecnológico (FONDECYT Project 1110713) and from Dirección General de Investigación y Posgrado de la Pontificia Universidad Católica de Valparaíso. We would also like to thank the useful comments made by the six reviewers, which made possible to greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Rivera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vera, F., Rivera, R. & Núñez, C. Burning a Candle in a Vessel, a Simple Experiment with a Long History. Sci & Educ 20, 881–893 (2011). https://doi.org/10.1007/s11191-011-9337-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9337-4

Keywords

  • Ignition Temperature
  • Closed Volume
  • Candle Flame
  • Focus Light Beam
  • Head Match