Skip to main content
Log in

Study of the Morphological and Functional State of Higher Plant Tissues by Optical Coherence Microscopy and Optical Coherence Tomography

  • Methods
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Comparative analysis of two optical methods—optical coherence tomography (OCT) and optical coherence microscopy (OCM)—was made for vital visualization of plant tissues in tomato (Lycopersicon esculentum Mill), spiderwort (Tradescantia pallida (Rose) D. Hunt), orach (Atriplex sp.), and leaves and seeds of medium starwort (Stellaria media L.). The obtained OCT- and OCM-images allowed the morphological and functional state of plant tissues to be assessed in vivo. A higher spatial resolution of the OCM method, as compared to OCT method, allowed plant morphological structures to be identified with greater confidence. The morphological and functional state of tissues can be monitored with a time resolution of 1–4 s in intact plants, without removing them from the habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OCM:

optical coherence microscopy

OCT:

optical coherence tomography

REFERENCES

  1. Gelikonov, V.M., Gelikonov, G.V., Gladkova, N.D., Kuranov, R.V., Nikulin, N.K., Petrova, G.A., Pochinko, V.V., Pravdenko, K.I., Sergeev, A.M., Feldstein, F.I., Khanin, Ya.I., and Shabanov, D.V., Coherence Optical Tomography of Microscopic Inhomogenities in Biological Tissues, JETP Lett., 1995, vol. 61, pp. 158–162.

    Google Scholar 

  2. Gelikonov, V.M., Gelikonov, G.V., Ksenofontov, S.Yu., Kuranov, R.V., Morozov, A.N., Myakov, A.V., Turkin, A.A., Turchin, I.V., and Shabanov, D.V., New Approaches in Broadband Fiber-Optic Interferometry for Optical Coherence Tomography, Radiophys. Quantum Electronics, 2003, vol. 46, pp. 550–564.

    Article  Google Scholar 

  3. Gladkova, N.D., Feldstein, F.I., Gelikonov, V.M., Gelikonov, G.V., Sergeev, A.M., Khanin, Ya.I., Pochinko, V.V., Nikulin, N.K., Petrova, G.A., Leonov, V.I., Pravdenko, K.I., and Shabanov, D.V., Optical Coherence Tomography: First Steps in the Clinical Practice and Perspectives, Klin. Revmatol., 1996, no. 1, pp. 38–42.

  4. Sergeev, A.M., Gelikonov, V.M., Gelikonov, G.V., Feldstein, F.I., Gladkova, N.D., Shahova, N.M., Snopova, L.B., Shahov, A.V., Kusnetzova, I.A., Denisenko, A.N., Pochinko, V.V., Chumakov, Y.P., and Strelzova, O.S., In Vivo Endoscopic OCT Imaging of Precancer and Cancer States of Human Mucosa, Optic. Express., 1997, vol. 1, pp. 432–440.

    Google Scholar 

  5. Hettinger, J.W., Mattozzi, M., Myers, W.R., Williams, M.E., Reeves, A., Parsons, R.L., Haskell, R.C., Petersen, D.C., Wang, R., and Medford, J.I., Optical Coherence Microscopy: A Technology for Rapid, In Vivo, Non-Destructive Visualization of Plant and Plant Cells, Plant Physiol., 2000, vol. 123, pp. 3–15.

    Article  PubMed  Google Scholar 

  6. Sapozhnikova, V.V., Kamenskii, V.A., and Kuranov, R.V., Visualization of Plant Tissue by Optical Coherence Tomography, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 316–320 (Russ. J. Plant Physiol., Engl. Transl., pp. 282–290).

    Google Scholar 

  7. Gelikonov, G.V., Gelikonov, V.M., Ksenofontov, S.U., Morosov, A.N., Myakov, A.V., Potapov, Yu.P., Saposhnikova, V.V., Sergeeva, E.A., Shabanov, D.V., Shakhova, N.M., and Zagainova, E.V., Compact Optical Coherence Microscope, Part 5 (Microscopy), Coherence-Domain Optical Methods in Biomedical Diagnostics, Environmental, and Material Science, Tuchin, V.V., Ed., Dordrecht: Kluwer, 2003, vol. 2, pp. 342–362.

    Google Scholar 

  8. Sapozhnikova, V.V., Kamensky, V.A., and Kuranov, R.V., Optical Coherence Tomography for Visualization of Plant Tissues: Laser Applications in Medicine, Biology, and Environmental Science, Proc. SPIE, 2004, vol. 5149, pp. 231–238.

    Article  Google Scholar 

  9. Sapozhnikova, V.V., Kamensky, V.A., Kuranov, R.V., Kutis, I., Snopova, L.B., and Myakov, A.V., In Vivo Visualization of Tradescantia Leaf Tissue and Monitoring the Physiological and Morphological States under Different Water Supply Conditions Using Optical Coherence Tomography, Planta, 2004, vol. 219, pp. 601–609.

    Article  PubMed  Google Scholar 

  10. Roshchina, V.D. and Roshchina, V.V., Vydelitel’naya funktsiya vysshikh rastenii (Secretory Function in Higher Plants), Moscow: Nauka, 1989.

    Google Scholar 

  11. Dunn, A. and Richards-Kortum, R., Three-Dimensional Computation of Light Scattering from Cells, IEEE J. Select. Top. Quan. Electronics, 1996, vol. 2, pp. 898–905.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 628–634.

Original Russian Text Copyright © 2005 by Kutis, Sapozhnikova, Kuranov, Kamenskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutis, I.S., Sapozhnikova, V.V., Kuranov, R.V. et al. Study of the Morphological and Functional State of Higher Plant Tissues by Optical Coherence Microscopy and Optical Coherence Tomography. Russ J Plant Physiol 52, 559–564 (2005). https://doi.org/10.1007/s11183-005-0083-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0083-9

Key words

Navigation