Skip to main content
Log in

Numerical Assessment of Electrical and Magnetic Characteristics of Elastomer Composites

  • PHYSICS OF MAGNETIC PHENOMENA
  • Published:
Russian Physics Journal Aims and scope

The paper presents algorithms for solving boundary value problems of electrical conductivity and magnetostatics for a cell of elastomeric composite materials (ECMs) by the finite element method. The algorithms enable one to determine both potential and strength of electromagnetic fields which are relevant in the development of the ECMs with specified functional properties. The values of electrical conductivity and magnetic permeability have been calculated by comparing their integral levels for the ECM cell (electromagnetic field energy and heat power loss) with those of the equivalent homogeneous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Lyukshin, B. A. Lyukshin, S. V. Panin, et al., Mech. Solids, 58, 119 (2023); DOI: https://doi.org/10.3103/S0025654422600775.

    Article  ADS  Google Scholar 

  2. S. A. Bochkareva, N. Y. Grishaeva, B. A. Lyukshin, et al., Phys. Mesomech., 24, 196 (2021); DOI: https://doi.org/10.1134/S1029959921020090.

    Article  Google Scholar 

  3. S. A. Bochkareva, N. Yu. Grishaeva, B. A. Lyukshin, et al., Mech. Compos. Mater., 54, 775 (2019); DOI: https://doi.org/10.1007/s11029-019-9782-8

    Article  ADS  Google Scholar 

  4. B. Stenberg, M. Lokander, and T. Reitberger, Annu. Trans. Nord. Rheol. Soc., 12, 163 (2004).

    Google Scholar 

  5. A. L. Moore and L. Shi, Mater. Today, 17, 163 (2014); DOI: https://doi.org/10.1016/j.mattod.2014.04.003.

    Article  CAS  Google Scholar 

  6. M. Ruan, D. Yang, W. Guo, et al., Appl. Surf. Sci., 439, 186 (2018); DOI: https://doi.org/10.1016/j.apsusc.2017.12.250.

    Article  ADS  CAS  Google Scholar 

  7. N. Ning, Q. Ma, S. Liu, et al., ACS Appl. Mater. Interfaces, 7, 10755–10762 (2015); DOI: https://doi.org/10.1021/acsami.5b00808.

    Article  CAS  Google Scholar 

  8. H. Meng and G. Li, Polymer, 54, 2199 (2013); DOI:https://doi.org/10.1016/j.polymer.2013.02.023.

    Article  CAS  Google Scholar 

  9. X. Liu, Q. Han, D. Yang, et al., ACS Omega, 5, 23, 14006 (2020); DOI: https://doi.org/10.1021/acsomega.0c01404.

  10. G. Filipcse, I. Csetneki, A. Szilágyi, et al., Adv. Polym. Sci., 206, 137 (2007); DOI https://doi.org/10.1007/12_2006_104.

    Article  CAS  Google Scholar 

  11. J.-W. Zha, Y.-H. Zhu, W.-K. Li , et al., Appl. Phys. Lett., 101, 062905 (2012); DOI: https://doi.org/10.1063/1.4745509.

    Article  ADS  CAS  Google Scholar 

  12. H. Böse, Int. J. Mod. Phys. B, 21, 4790 (2007); DOI:https://doi.org/10.1142/s0217979207045670.

    Article  ADS  Google Scholar 

  13. H. Shi, W. Zhou, Z. Wen, et al., Mater. Horiz., 10, 928 (2023); DOI: https://doi.org/10.1039/D2MH01140A.

    Article  PubMed  CAS  Google Scholar 

  14. P. Małecki, M. Królewicz, F. Hiptmair, et al., Smart Mater. Struct., 25 (2016); DOI https://doi.org/10.1088/0964-1726/25/10/105030.

  15. H. Yu, Y. Feng, C. Chen, et al., Adv. Sci., 9, 2201331 (2022); DOI: https://doi.org/10.1002/advs.202201331.

    Article  CAS  Google Scholar 

  16. L. Persano, C. Dagdeviren, Y. Su, et al., Nat. Commun., 4, 1633 (2013); https://doi.org/https://doi.org/10.1038/ncomms2639.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Y. C. Fan, X. L. Gong, W. Q. Jiang, et al., Structure, 19, 055015 (2010); DOI: https://doi.org/10.1088/0964-1726/19/5/055015.

    Article  CAS  Google Scholar 

  18. Y. Wang, Y. Hu, L. Chen, et al., Polym. Test., 25, 262 (2006); DOI:https://doi.org/10.1016/j.polymertesting.2005.10.002.

    Article  CAS  Google Scholar 

  19. M. Mrlík, M. Ilčíková, M. Cvek, et al., RSC Adv., 6, 32823 (2016); DOI: https://doi.org/10.1039/C6RA03919G.

    Article  ADS  CAS  Google Scholar 

  20. Y. Pan and L. Lu, Proc. ASME, 2016 International Manufacturing Science and Engineering Conference MSEC2016, 1 (2016); DOI:https://doi.org/10.1115/msec2016-8865.

  21. H. Shi, W. Zhou, Z. Wen, et al., Mater. Horiz., 10, 928 (2023); DOI:https://doi.org/10.1039/D2MH01140A.

    Article  PubMed  CAS  Google Scholar 

  22. S. Abramchuk, E. Kramarenko, D. Grishin, et al., Polym. Adv. Technol., 18, 513 (2007); DOI: https://doi.org/10.1002/pat.924.

    Article  CAS  Google Scholar 

  23. V. S. Molchanov, G. V. Stepanov, V. G. Vasiliev, et al., Mater. Eng., 299, 1116 (2014); DOI: https://doi.org/10.1002/mame.201300458.

    Article  CAS  Google Scholar 

  24. I. L. Ngo, S. V. Prabhakar Vattikuti, and C. A Byon, Int. J. Heat Mass Transf., 114, 727 (2017); DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.116.

  25. K. Danas, S. V. Kankanala, and N. Triantafyllidis, J. Mech. Phys. Solids, 60, 120 (2012); DOI:https://doi.org/10.1016/j.jmps.2011.09.006.

    Article  ADS  CAS  Google Scholar 

  26. J. Zhu, Z. Xu, and Y. Guo, J. Mater. Civ. Eng., 25, 1762–1771 (2013); DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000727.

    Article  Google Scholar 

  27. R. Ortigosa, J. Martínez-Frutos, C. Mora-Corral, et al., Appl. Math. Model., 103, 141 (2022); DOI: https://doi.org/10.1016/j.apm.2021.10.033.

    Article  MathSciNet  Google Scholar 

  28. K. J. Binns and P. J. Lawrenson, Analysis and Computation of the Electric and Magnetic Field Problems, Pergamon Press, Oxford (1973).

    Google Scholar 

  29. L. R. Neumann and K. S. Demirchyan, Theoretical Foundations of Electrical Engineering [in Russian], Vol. 2, Energiya, Leningrad (1975).

    Google Scholar 

  30. L. Segerlind, Applied Finite Element Analysis, John Willey & Sons, New York (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Lyukshin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyukshin, P.A., Lyukshin, B.A., Panin, S.V. et al. Numerical Assessment of Electrical and Magnetic Characteristics of Elastomer Composites. Russ Phys J 67, 94–101 (2024). https://doi.org/10.1007/s11182-024-03093-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03093-5

Keywords

Navigation