Skip to main content

Advertisement

Log in

Simulation of the Mechanical Behavior of a Dental Implant in Bone Tissue Under Shock Wave Treatment

  • Published:
Russian Physics Journal Aims and scope

Dental implants are becoming an increasingly important part of modern dental treatment. Developing an optimal implant surface design can improve osseointegration. Promising to increase the rate of osseointegration is the use of extracorporeal shock wave therapy, which has proven itself for the treatment of fractures, bone defects, and bone tissue regeneration during surgery and arthroplasty. This work aims at a numerical investigation of the effects of low-energy shock wave therapy of various intensities on the mechanical behavior of dental implants and surrounding bone tissues, taking into account the physiological characteristics in the area of dental implant placement. Modeling was carried out using the method of movable cellular automata. The results of computer simulation showed that the conditions for the regeneration of bone tissues at the near-contact zone with the implant of the jaw segment are created by a shock wave with intensity greater than 0.1 mJ/mm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Colombo, S. Satoshi, J. Okazaki, et al., J. Dent., 40 (4), 338–46 (2012); DOI: https://doi.org/10.1016/j.jdent.2012.01.010.

  2. C. P. Hao, N. J. Cao, Y. H. Zhu, and W. Wang, Sci. Rep., 11, 13849 (2021); DOI: https://doi.org/10.1038/s41598-021-93307-4.

    Article  ADS  Google Scholar 

  3. W. P. Song, X. H. Ma, Y. X. Sun, et al., Med. Hypotheses, 145, 110294 (2020); DOI: https://doi.org/10.1016/j.mehy.2020.110294.

    Article  Google Scholar 

  4. E. V. Shilko, A. S. Grigoriev, and A. Yu. Smolin, FU Mech. Eng., 19, 7–22 (2021); DOI: https://doi.org/10.22190/FUME201221012S.

    Article  Google Scholar 

  5. S. G. Psakhie, A. V. Dimaki, E. V. Shilko, and S. V. Astafurov, Int. J. Numer. Methods Eng., 106, 623–643 (2016); DOI: https://doi.org/10.1002/nme.5134.

    Article  Google Scholar 

  6. G. M. Eremina and A. Yu. Smolin, Comput. Methods Programs Biomed., 200, 105929 (2021); DOI: https://doi.org/10.1016/j.cmpb.2021.105929.

    Article  Google Scholar 

  7. G. M. Eremina and A. Yu. Smolin, Rus. J. Biomech., 1, 32–45 (2023); DOI: https://doi.org/10.15593/RZhBiomech/2023.1.04.

  8. D. R. Carter and W. C. Hayes, J. Bone Joint Surg., 59(7), 954–962 (1977).

    Article  Google Scholar 

  9. S. C. Cowin and S. B. Doty, Tissue Mechanics, Springer, New York (2007).

    Book  Google Scholar 

  10. K. A. Mann and M. A. Miller, Comput. Methods Biomech. Biomed. Engin., 17(16), 1809–1820 (2014); DOI: https://doi.org/10.1080/10255842.2013.767336.

    Article  Google Scholar 

  11. G. Lewis, J. Biomed. Mater. Res., 38, 155–182 (1977); DOI: https://doi.org/10.1002/(sici)1097-4636(199722)38:2<155::aidjbm10>3.0.co;2-c.

    Article  Google Scholar 

  12. Starbond Ni, https://scheftner.dental/starbond-ni-en.html (accessed on 26 July 2023).

  13. P. Krakhmalev, G. Fredriksson, I. Yadroitsava, et al., Phys. Procedia, 83, 778–788 (2016); DOI: https://doi.org/10.1016/j.phpro.2016.08.080.

  14. J. He, Z. Zeng, H. Li, and S.T. Wang, Mat. Des., 196, 109171 (2020); DOI: https://doi.org/10.1016/j.matdes.2020.109171.

    Article  Google Scholar 

  15. S. Sathishkumar, A. Meka, D. Dawson, et al., J. Dent. Res., 87(7), 687–691 (2008); DOI: https://doi.org/10.1177/154405910808700703.

  16. H. Hazan-Molina, Y. Gabet, I. Aizenbud, et al., Arch. Oral Biol., 134, 105327 (2022); DOI: https://doi.org/10.1016/j.archoralbio.2021.105327.

    Article  Google Scholar 

  17. N. J. Giori, L. Ryd and D. R. Carter, J. Arthroplasty, 10(4), 514–522 (1995); DOI: https://doi.org/10.1016/s0883-5403(05)80154-8.

  18. M. Wang, N. Yang and X. Wang, Med. Biol. Eng. Comput., 55(11), 1895–1914 (2017); DOI: https://doi.org/10.1007/s11517-017-1701-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Smolin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolin, A.Y., Eremina, G.M. & Martyshina, I.P. Simulation of the Mechanical Behavior of a Dental Implant in Bone Tissue Under Shock Wave Treatment. Russ Phys J 66, 1310–1315 (2024). https://doi.org/10.1007/s11182-023-03077-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03077-x

Keywords

Navigation