Skip to main content
Log in

Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Inserting a titanium implant in the bone tissue may modify its physiological loading and therefore cause bone resorption, via a phenomenon called stress-shielding. The local stress field around the bone-implant interphase (BII) created under shear loading may be influenced by different parameters such as the bone-implant contact (BIC) ratio, the bone Young’s modulus, the implant roughness and the implant material. A 2-D finite element model was developed to model the BII and evaluate the impact of the aforementioned parameters. The implant roughness was described by a sinusoidal function (height 2Δ, wavelength λ), and different values of the BIC ratio were simulated. A heterogeneous distribution of the maximum shear stress was evidenced in the periprosthetic bone tissue, with high interfacial stress for low BIC ratios and low implant roughness and underloaded regions near the roughness valleys. Both phenomena may lead to stress-shielding-related effects, which were concentrated within a distance lower than 0.8λ from the implant surface. Choosing an implant material with mechanical properties matching those of bone tissue leads to a homogenized shear stress field and could help to prevent stress-shielding effects. Finally, the equivalent shear modulus of the BII was derived to replace its complex behavior with a simpler analytical model in future studies.

Graphical abstract

Schematic illustrations of the 2-D finite element model used in the present study and spatial variation of the maximal shear stress in the periprosthetic bone tissue for different implant roughness and bone-implant contact ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010) The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 21:129–136

    Article  PubMed  Google Scholar 

  2. Albrektsson T, Brånemark PI, Hansson H-A, Lindström J (1981) Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52:155–70

    Article  CAS  PubMed  Google Scholar 

  3. Alla RK, Ginjupalli K, Upadhya N, Mohammed S, Sekar R, Ravi R (2011) Surface roughness of implants: a review. Trends Biomater Artif Org 25:112–118

    Google Scholar 

  4. Arabnejad S, Johnston B, Tanzer M, Pasini D (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res 35:1774–1783

    Article  CAS  PubMed  Google Scholar 

  5. Au AG, James Raso V, Liggins AB, Amirfazli A (2007) Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. J Biomech 40:1410–1416

    Article  PubMed  Google Scholar 

  6. Bugbee WD, Culpepper WJ 2nd, Engh CA Jr, Engh CA Sr (1997) Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg Am 79:1007–1012

    Article  CAS  PubMed  Google Scholar 

  7. Buser D, Ingimarsson S, Dula K, Lussi A, Hirt H, Belser U (2002) Long-term stability of osseointegrated implants in augmented bone: a 5-year prospective study in partially edentulous patients. Int J Periodont Restor Dent 22:109–17

    Google Scholar 

  8. Chong DY, Hansen UN, Amis AA (2010) Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. J Biomech 43:1074–1080

    Article  PubMed  Google Scholar 

  9. Cole EW, Moulton SG, Gobezie R, Romeo AA, Walker JB, Lederman E et al (2020) Five-year radiographic evaluation of stress shielding with a press-fit standard length humeral stem. JSES Int 4:109–113

    Article  PubMed  PubMed Central  Google Scholar 

  10. Completo A, Fonseca F, Simões JA (2008) Strain shielding in proximal tibia of stemmed knee prosthesis: experimental study. J Biomech 41:560–566

    Article  CAS  PubMed  Google Scholar 

  11. Duyck J, Corpas L, Vermeiren S, Ogawa T, Quirynen M, Vandamme K et al (2010) Histological, histomorphometrical, and radiological evaluation of an experimental implant design with a high insertion torque. Clin Oral Implants Res 21:877–884

    PubMed  Google Scholar 

  12. Engh CA Jr, Young AM, Engh CA Sr, Hopper RH Jr (2003) Clinical consequences of stress shielding after porouscoated total hip arthroplasty. Clin Orthop Relat Res 417:157–63. https://doi.org/10.1097/01.blo.0000096825.67494.e3

    Article  Google Scholar 

  13. Firoozbakhsh K, Aleyaasin M (1989) The effect of stress concentration on bone remodeling: theoretical predictions. J Biomech Eng 111:355–360

    Article  CAS  PubMed  Google Scholar 

  14. Fraulob M, Pang S, Le Cann S, Vayron R, Laurent-Brocq M, Todatry S et al (2020) Multimodal characterization of the bone-implant interface using Raman spectroscopy and nanoindentation. Med Eng Phys 84:60–67

    Article  PubMed  Google Scholar 

  15. Fraulob M, Vayron R, Le Cann S, Lecuelle B, Hériveaux Y, Albini Lomami H et al (2020) Quantitative ultrasound assessment of the influence of roughness and healing time on osseointegration phenomena. Sci Rep 10:21962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244:597–620

    Article  CAS  PubMed  Google Scholar 

  17. Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15

    PubMed  Google Scholar 

  18. Galloway F, Kahnt M, Ramm H, Worsley P, Zachow S, Nair P et al (2013) A large scale finite element study of a cementless osseointegrated tibial tray. J Biomech 46:1900–1906

    Article  PubMed  Google Scholar 

  19. Gao X, Fraulob M, Haïat G (2019) Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 16:20190259

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gortchacow M, Wettstein M, Pioletti DP, Terrier A (2011) A new technique to measure micromotion distribution around a cementless femoral stem. J Biomech 44:557–560

    Article  PubMed  Google Scholar 

  21. Gupta S, Patil N, Solanki J, Singh R, Laller S (2015) Oral implant imaging: a review. Malays J Med Sci 22:7–17

    PubMed  PubMed Central  Google Scholar 

  22. Haïat G, Wang H-L, Brunski J (2014) Effects of biomechanical properties of the bone–implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annu Rev Biomed Eng 16:187–213

    Article  PubMed  Google Scholar 

  23. Hériveaux Y, Haïat G, Nguyen V-H (2020) Reflection of an ultrasonic wave on the bone-implant interface: comparison of two-dimensional and three-dimensional numerical models. J Acoust Soc Am 147:EL32–EL36. https://doi.org/10.1121/10.0000500

  24. Hériveaux Y, Nguyen VH, Biwa S, Haïat G (2020) Analytical modeling of the interaction of an ultrasonic wave with a rough bone-implant interface. Ultrasonics 108:106223

    Article  PubMed  Google Scholar 

  25. Heriveaux Y, Nguyen VH, Brailovski V, Gorny C, Haiat G (2019) Reflection of an ultrasonic wave on the bone-implant interface: effect of the roughness parameters. J Acoust Soc Am 145:3370

    Article  CAS  PubMed  Google Scholar 

  26. Heriveaux Y, Nguyen VH, Haiat G (2018) Reflection of an ultrasonic wave on the bone-implant interface: a numerical study of the effect of the multiscale roughness. J Acoust Soc Am 144:488

    Article  PubMed  Google Scholar 

  27. Huiskes R, Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134

    Article  Google Scholar 

  28. Immel K, Duong TX, Nguyen V-H, Haïat G, Sauer RA (2020) A modified Coulom, s law for the tangential debonding of osseointegrated implants. Biomech Model Mechanobiol 19:1091–1108

    Article  PubMed  Google Scholar 

  29. Jimenez R (2002) The radiology of orthopaedic implants. An Atlas of Techniques and Assessment. J Bone Joint Surg Am 84:514

    Article  Google Scholar 

  30. Johansson CB, Albrektsson T (1987) Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 2(2):69–75

    CAS  PubMed  Google Scholar 

  31. Joshi MG, Advani SG, Miller F, Santare MH (2000) Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech 33:1655–1662

    Article  CAS  PubMed  Google Scholar 

  32. Kohli N, Stoddart JC, van Arkel RJ (2021) The limit of tolerable micromotion for implant osseointegration: a systematic review. Sci Rep 11:10797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Korabi R, Shemtov-Yona K, Dorogoy A, Rittel D (2017) The failure envelope concept applied to the bone-dental implant system. Sci Rep 7:2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuiper J, Huiskes R (1997) The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacements. J Biomech Eng 119:228–31

    Article  CAS  PubMed  Google Scholar 

  35. Kurniawan D, Nor FM, Lee HY, Lim JY (2012) Finite element analysis of bone-implant biomechanics: refinement through featuring various osseointegration conditions. Int J Oral Maxillofac Surg 41:1090–1096

    Article  CAS  PubMed  Google Scholar 

  36. Kusano T, Seki T, Higuchi Y, Takegami Y, Osawa Y, Ishiguro N (2018) Preoperative canal bone ratio is related to high-degree stress shielding: a minimum 5-year follow-up study of a proximally hydroxyapatite-coated straight tapered titanium femoral component. J Arthroplasty 33:1764–1769

    Article  PubMed  Google Scholar 

  37. Le Cann S, Tudisco E, Perdikouri C, Belfrage O, Kaestner A, Hall S, Tägil M, Isaksson H (2017) Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography. J Mech Behav Biomed Mater 75:271–278. https://doi.org/10.1016/j.jmbbm.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  38. Li M-J, Kung P-C, Chang Y-W, Tsou N-T (2020) Healing pattern analysis for dental implants using the mechano-regulatory tissue differentiation model. Int J Mol Sci 21:9205

    Article  CAS  PubMed Central  Google Scholar 

  39. Manikyamba YJB, Mc SS, Raju AVR, Rao B, Nair CK (2018) Implant thread designs: an overview

  40. Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP et al (2014) Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 47:3–13

    Article  PubMed  Google Scholar 

  41. Melnyk AD, Wen TL, Kingwell S, Chak JD, Singh V, Cripton PA et al (2012) Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading: an in vitro investigation. Spine (Phila Pa 1976) 37:E1126-33

    Article  Google Scholar 

  42. Michel A, Bosc R, Meningaud JP, Hernigou P, Haiat G (2016) Assessing the acetabular cup implant primary stability by impact analyses: a cadaveric study. PLoS ONE 11:e0166778

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mondal S, Ghosh R (2019) Effects of implant orientation and implant material on tibia bone strain, implant-bone micromotion, contact pressure, and wear depth due to total ankle replacement. Proc Inst Mech Eng H 233:318–331

    Article  PubMed  Google Scholar 

  44. Morgan EF, Unnikrisnan GU, Hussein AI (2018) Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng 20:119–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Natali AN, Pavan PG, Ruggero AL (2006) Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res 17:67–74

    Article  PubMed  Google Scholar 

  46. Nicholson JW (2020) Titanium alloys for dental implants: a review. Prosthesis 2:100–116. https://doi.org/10.3390/prosthesis2020011

    Article  Google Scholar 

  47. Niinomi M, Nakai M (2011) Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater 2011:836587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okulov IV, Volegov AS, Attar H, Bönisch M, Ehtemam-Haghighi S, Calin M et al (2017) Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications. J Mech Behav Biomed Mater 65:866–871

    Article  CAS  PubMed  Google Scholar 

  49. Okulov IV, Weissmüller J, Markmann J (2017) Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone. Sci Rep 7:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A (2000) Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 15:779–84

    CAS  PubMed  Google Scholar 

  51. Piao C, Wu D, Luo M, Ma H (2014) Stress shielding effects of two prosthetic groups after total hip joint simulation replacement. J Orthop Surg Res 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  52. Raffa ML, Nguyen VH, Haiat G (2019) Micromechanical modeling of the contact stiffness of an osseointegrated bone-implant interface. Biomed Eng Online 18:114

    Article  PubMed  PubMed Central  Google Scholar 

  53. Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette CH, Haiat G (2021) Stress shielding at the bone-implant interface: influence of surface roughness and of the bone-implant contact ratio. J Orthop Res 39:1174–1183

    Article  CAS  PubMed  Google Scholar 

  54. Rojek J, Telega JJ (1999) Numerical simulation of bone-implant systems using a more realistic model of the contact interfaces with adhesion. J Theor Appl Mech 37:659–686

    Google Scholar 

  55. Rønold HJ, Ellingsen JE (2002) Effect of micro-roughness produced by TiO2 blasting–tensile testing of bone attachment by using coin-shaped implants. Biomaterials 23:4211–4219

    Article  PubMed  Google Scholar 

  56. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34:40–57

    Article  CAS  PubMed  Google Scholar 

  57. Ryu HS, Namgung C, Lee JH, Lim YJ (2014) The influence of thread geometry on implant osseointegration under immediate loading: a literature review. J Adv Prosthodont 6:547–554

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sadegh AM, Luo GM, Cowin SC (1993) Bone ingrowth: an application of the boundary element method to bone remodeling at the implant interface. J Biomech 26:167–182

    Article  CAS  PubMed  Google Scholar 

  59. Shirazi-Adl A, Dammak M, Paiement G (1993) Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants. J Biomed Mater Res 27:167–175

    Article  CAS  PubMed  Google Scholar 

  60. Sumner DR (2015) Long-term implant fixation and stress-shielding in total hip replacement. J Biomech 48:797–800

    Article  CAS  PubMed  Google Scholar 

  61. Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R (2015) Shear deformation and fracture of human cortical bone. Bone 71:25–35

    Article  PubMed  Google Scholar 

  62. Turner CH, Wang T, Burr DB (2001) Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif Tissue Int 69:373–378

    Article  CAS  PubMed  Google Scholar 

  63. Vayron R, Matsukawa M, Tsubota R, Mathieu V, Barthel E, Haiat G (2014) Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time. Phys Med Biol 59:1389–1406

    Article  CAS  PubMed  Google Scholar 

  64. Vayron R, Nguyen V-H, Lecuelle B, Albini Lomami H, Meningaud J-P, Bosc R et al (2018) Comparison of resonance frequency analysis and of quantitative ultrasound to assess dental implant osseointegration. Sensors (Basel, Switzerland) 18:1397

    Article  Google Scholar 

  65. Voigt C, Klöhn C, Bader R, von Salis-Soglio G, Scholz R (2007) Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement. Biomed Tech (Berl) 52:208–215

    Article  Google Scholar 

  66. Weinans H, Sumner DR, Igloria R, Natarajan RN (2000) Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J Biomech 33:809–817

    Article  CAS  PubMed  Google Scholar 

  67. Yamako G, Janssen D, Hanada S, Anijs T, Ochiai K, Totoribe K et al (2017) Improving stress shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J Biomech 63:135–143

    Article  PubMed  Google Scholar 

  68. Zhang QH, Cossey A, Tong J (2016) Stress shielding in periprosthetic bone following a total knee replacement: effects of implant material, design and alignment. Med Eng Phys 38(12):1481–1488. https://doi.org/10.1016/j.medengphy.2016.09.018

    Article  PubMed  Google Scholar 

  69. Zhou Y, Gong C, Hossaini-Zadeh M, Du J (2019) 3D contact and strain in alveolar bone under tooth/implant loading. In: TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, Cham, pp 793–798

Download references

Acknowledgements

This project has received funding from the Paris Ile-de-France Region (DIM “Respore” and F2M Federation), from the CNRS through the MITI interdisciplinary program, and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 682001, project ERC Consolidator Grant 2015 BoneImplant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Haïat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hériveaux, Y., Le Cann, S., Fraulob, M. et al. Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading. Med Biol Eng Comput 60, 3281–3293 (2022). https://doi.org/10.1007/s11517-022-02657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02657-2

Keywords

Navigation