Skip to main content
Log in

Construction of a Two-Dimensional Discrete Dislocation Model to Describe the Plastic Deformation Process of a Single Crystal

  • Published:
Russian Physics Journal Aims and scope

The paper considers the development and numerical implementation of a two-dimensional discrete dislocation model to describe the inelastic deformation of a hexagonal close-packed (HCP) single crystal, taking into account long-range and short-range dislocation interactions. The analytical results are obtained for image fields using the Fourier series for cases of dislocation approaching the crystal boundaries. The model adequacy tests are carried out, and the evolution of the dislocation structure is illustrated with the gradual inclusion of the mechanisms of dislocation annihilation, dislocation pinning at obstacles, and dislocation nucleation by the Frank-Read sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Orlov, Introduction to the Theory of Defects in Crystals [in Russian], VysshayaShkola, Moscow (1983).

  2. O. B. Naimark, Yu. V. Bayandin, V. A. Leontiev, and S. L. Permyakov, Phys. Mesomech., 8, No. 5, 21–26 (2005).

    Google Scholar 

  3. L. P. Kubin, Dislocation Patterns: Experiment, Theory and Simulation, Plenum Press, New York (1996); https://doi.org/10.1007/978-1-4613-0385-5_4.

    Article  Google Scholar 

  4. . F. Sarafanov and V. N. Perevezentsev, Patterns of Deformation Grinding of the Structure of Metals and Alloys [in Russian], Publishing House of Nizhny Novgorod State University, Nizhny Novgorod (2007).

  5. G. A. Malygin, Adv. Phys. Sci., 169, No. 9, 979–1010 (1999); https://doi.org/10.3367/UFNr.0169.199909c.0979.

  6. A. N. Gulluoglu and C. S. Hartley, Modell. Simul. Mater. Sci. Eng., 1, 1–17 (1992); https://doi.org/10.1088/0965-0393/1/1/001.

  7. S. Takeuchi and A.S. Argon, Mater. Sci., 11, 1542–1566 (1976); https://doi.org/10.1007/BF00540888.

  8. A. N. Gulluoglu and C. S. Hartley, Modell. Simul. Mater. Sci. Eng., 1, 383–402 (1993).

    Article  ADS  Google Scholar 

  9. F. Meng, E. Ferrie, C. Depres, and M. Fivel, Int. J. Fatigue, 149, 106234 (2021); https://doi.org/10.1016/j.ijfatigue.2021.106234.

  10. H. H. M. Cleveringa, E. Van der Giessen, and A. Needleman, Acta Mater., 45, 3163–3179 (1997); https://doi.org/10.1016/S1359-6454(97)00011-6.

  11. H. G. M. Kreuzer and R. Pippan, Mater. Sci. Eng. A, 400, 460–462 (2005); https://doi.org/10.1016/J.MSEA.2005.01.065.

  12. L. Nicola, A. F. Bower, K.-S. Kim, et al., J. Mech. Phys. Solids, 55, 1120–1144 (2007); https://doi.org/10.1016/j.jmps.2006.12.005.

  13. Z. Zheng, D. S. Balint, and F. P. E. Dunne, Int. J. Plast., 87, 1–17 (2016); https://doi.org/10.1016/j.ijplas.2016.08.009.

  14. M. Wallin, W. A. Curtin, M. Rustinmaa, and A. Needleman, J. Mech. Phys. Solids, 56, 3167–3180 (2008); https://doi.org/10.1016/j.jmps.2008.08.004.

  15. H. M. Zbib, T. D. Rubia, M. Rhee, and J. P. Hirth, J. Nucl. Mater., 276, 154–165 (2000); https://doi.org/10.1016/S0022-3115(99)00175-0.

  16. E. Van der Giessen and A. Needleman, Modell. Simul. Mater. Sci. Eng., 3, 689–735 (1995); https://doi.org/10.1088/0965-0393/3/5/008.

  17. J. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, New York (1982).

    Google Scholar 

  18. W. Cai, A. Arsenlis, C. R. Weinberger, and V. V. Bulatov, J. Mech. Phys. Solids, 54, 561–587 (2006); https://doi.org/10.1016/j.jmps.2005.09.005.

  19. M. Tang, W. Cai, G. Xu, and V. V. Bulatov, Modell. Simul. Mater. Sci. Eng., 14, 1139–1151 (2006); https://doi.org/10.1088/0965-0393/14/7/003.

  20. K. Balusu and H. Huang, Modell. Simul. Mater. Sci. Eng., 25, 035007 (2017); https://doi.org/10.1088/1361-651X/aa5a9d.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Knyazev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, N.A., Volegov, P.S. Construction of a Two-Dimensional Discrete Dislocation Model to Describe the Plastic Deformation Process of a Single Crystal. Russ Phys J 66, 1194–1205 (2024). https://doi.org/10.1007/s11182-023-03062-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-03062-4

Keywords

Navigation