Skip to main content
Log in

Computer Simulation of Von Mises Stress Distribution in Clinker Material Hardening in Temperature Gradient Conditions

  • Published:
Russian Physics Journal Aims and scope

The paper presents computer simulation of the von Mises stress distribution in the clinker material hardening in temperature gradient conditions. Computer simulation concerns a virtual plane rectangular rod filled with clinker minerals and limited by nondeformable solid plates at the top and bottom. On the left, the rod is cooled down to –20°C, while on the right it is heated up to 60°C. Computer simulation shows that the von Mises stress distribution is nonuniform in longitudinal and normal sections during cement hardening in the temperature gradient conditions; the minimum von Mises stress being at the center of rod. It is found that the von Mises stress distribution is specific at the center and ends of the rod. The steplike von Mises stress distribution is clearly observed in the longitudinal section, in the vicinity of the cement/plate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Soppa, S. Schmauder, G. Fischer, J. Thesinz, and R. Ritter, Comput. Mater. Sci., 16, No. 1, 323–332 (1999).

    Article  Google Scholar 

  2. P. A. Rebinder, Physicochemical Mechanics of Dispersed Structures [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  3. H. F. W. Taylor, Cement Chemistry, 2nd ed., Thomas Telford, London (1997).

    Book  Google Scholar 

  4. G. N. Pshenichnyi, Tekhnologii betonov, 7-8, 15–18 (2010).

    Google Scholar 

  5. B. Lothenbach, G. Le Saout, M. Ben Haha, R. Figi, and E. Wieland, Cem. Concr. Res., 42, No. 2, 410–423 (2012).

  6. L. Pelletier-Chaignat, F. Winnefeld, B. Lothenbach, and C. J. Müller, Constr. Build. Mater., 26, No. 1, 619–627 (2012).

    Article  Google Scholar 

  7. L. Pelletier-Chaignat, F. Winnefeld, B. Lothenbach, G. Le Saout, C. J. Müller, and C. Famy, Cem. Concr. Compos., 33, No. 5, 551–561 (2011).

    Article  Google Scholar 

  8. L. J. Parro and D. C. Killoh, Proc. Br. Ceram. Soc., 35, 41–53 (1984).

    Google Scholar 

  9. G. S. Pisarenko, V. A. Agarev, A. L. Kvitka, V. G. Popkov, and E. S. Umanskii, Strength of Materials [in Russian], Vishchashkola, Kiev (1979).

  10. E. Melan and H. Parkus, Wärmespannungen infolge stationärer Temperaturfelder, Fizmatgiz, Moscow (1958).

    Google Scholar 

  11. Yu. Abzaev, A. Gnyrya, and S. Korobkov, IOP Conf. Ser.: Mater. Sci. Eng., 1079, 062001 (2021).

    Google Scholar 

  12. I. K. Kikoin, Table of Physical Quantities. Guide, Atomizdat, Moscow (1976).

  13. B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Cem. Concr. Res., 38, 1–18 (2008).

    Article  Google Scholar 

  14. T. Matschei, B. Lothenbach, and F. P. Glasser, Cem. Concr. Res., 37, 1379–1410 (2008).

    Article  Google Scholar 

  15. B. Lothenbach and F. Winnefeld, Cem. Concr. Res., 36, 209–226 (2006).

    Article  Google Scholar 

  16. D. P. Bentz, A Three-Dimensional Cement Hydration and Microstructures Program. I. Hydration Rate, Heat of Hydration and Chemical Shrinkage, National Bureau of Standards, Maryland (1995), pp. 1–47.

  17. M. Cervera, J. Oliver, and T. Prato, J. Eng. Mech., 125, No. 9, 1018–1027 (1999).

    Article  Google Scholar 

  18. F-J. Ulm and O. J. Coussy, Eng. Mech., 122, No. 12, 1123–1132 (1996).

  19. Z. P. Bažant, G. Cusatis, and L. Cedolin, J. Eng. Mech., 130, No. 6, 691–699 (2004).

    Article  Google Scholar 

  20. P. D. Tennis and H. M. Jennings, Cem. Concr. Res., 30, 855–863 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Abzaev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abzaev, Y.A., Klopotov, A.A., Korobkov, S.V. et al. Computer Simulation of Von Mises Stress Distribution in Clinker Material Hardening in Temperature Gradient Conditions. Russ Phys J 66, 512–520 (2023). https://doi.org/10.1007/s11182-023-02969-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02969-2

Keywords

Navigation