Skip to main content
Log in

Influence of Low-Temperature Superplastic Deformation on the Structural-Phase State and Mechanical Properties of the Ultrafine-Grained VT22 Alloy

  • Published:
Russian Physics Journal Aims and scope

The influence of low-temperature superplastic deformation on the structural-phase state and mechanical properties of ultrafine-grained titanium alloy VT22 has been studied at room temperature. It is shown that the tensile strain of alloy samples has an insignificant effect on their mechanical properties at strain rates of 2·10–3 and 6.9·1–3 s–1 and a temperature of 823 K. It has been established that this effect is due to the preservation of the ultra fine grade (UFG) structural-phase state of the alloy during superplastic deformation formed as a result of its processing by the method of all-round pressing. An increase in the deformation temperature to 873 K at the same strain rates leads to a decrease in the mechanical properties of the alloy by about 6–8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Peters and C. Leyens, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Weinkeim (2003); doi: https://doi.org/10.1002/3527602119.ch8.

    Article  Google Scholar 

  2. V. Moiseyev, Titanium Alloys. Russian Aircraft and Aerospace Applications, CRC Press, New York (2005); https://doi.org/10.1201/9781420037678.

  3. G. Lütjering and J. Williams, Titanium. Engineering Materials, Processes, Heidelberg/Springer, Berlin (2007).

  4. A. Mouritz, Introduction to Aerospace Materials, Woodhead Publishing (2012).

  5. O. A. Kaibyshev, in: Intermetallics and Ceramics, Springer-Verlag, Berlin; Heidelberg (1992).

  6. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge University Press, Cambridge (1997).

    Book  Google Scholar 

  7. O. A. Kaibyshev and F. Z. Utyashev, Superplasticity, Structure Refinement, and Treatment of Hard-to-Deform Alloys [in Russian], Nauka, Moscow (2002).

    Google Scholar 

  8. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, Wiley, New Jersey (2013).

    Book  Google Scholar 

  9. R. Y. Lutfullin, A. A. Kruglov, M. K. Mukhametrakhimov, and O. A. Rudenko, Lett. Mater., 5 (2), 185 (2015); https://doi.org/10.22226/2410-3535-2015-2-185-188.

  10. S. V. Zherebtsov, E. A. Kudryavtsev, G. A. Salishchev, et al., Acta Mater., 121, 152 (2016); doi:https://doi.org/10.1016/j.actamat.2016.09.003.

    Article  ADS  Google Scholar 

  11. E. V. Naydenkin, I. V. Ratochka, I. P. Mishin, et al., J. Mater. Sci., 52, No. 8, 4164 (2017); https://doi.org/10.1007/s10853-016-0508-1.

  12. E. Y. Klassman and V. V. Astanin, Lett. Mater., 10 (1), 10 (2020); doi:https://doi.org/10.22226/2410-3535-2020-1-10-15.

  13. M. Meyers, A. Mishra, and D. Benson, Prog. Mater. Sci., 51, 427 (2006).

    Article  Google Scholar 

  14. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials, Cambridge International Science Publishing, Cambridge (2007).

    Google Scholar 

  15. A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Woodhead Publishing Ltd. (2011)

  16. E. V. Naydenkin, I. V. Ratochka, and G. P. Grabovetskaya, Mater. Sci. Forum, 667–669, 1183 (2011).

    Google Scholar 

  17. I. A. Ovid’ko, R. Z. Valiev, and Y. T. Zhu, Prog. Mater. Sci., 94, 462 (2018).

  18. I. V. Ratochka, E. V. Naydenkin, I. P. Mishin, et al., J. Alloys Compd., 891, 161981 (2022).

    Article  Google Scholar 

  19. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, Mater. Sci. Eng. A, 323, 318 (2002).

    Article  Google Scholar 

  20. L. Saitova, I. Semenova, H. W. Höppel, et al., Mater. Werkst., 39, 367 (2008).

    Article  Google Scholar 

  21. H. Matsumoto, K. Yoshida, S-H. Lee, et al., Mater. Lett., 98, 209 (2013); https://doi.org/10.1016/j.matlet.2013.02.033.

  22. I. V. Ratochka, E. V. Naydenkin, O. N. Lykova, and I. P. Mishin, Russ. Phys. J., 64, No. 12, 2193 (2022).

    Article  Google Scholar 

  23. V. A. Vinokurov, I. V. Ratochka, E. V. Naydenkin, et al., RF Patent No. 2388566, Priority of July 22, 2008 (Published Bull. No. 13, May 10, 2010).

  24. I. V. Ratochka, E. V. Naydenkin, O. N. Lykova, and I. P. Mishin, Russ. Phys. J., 62, No. 8, 1322 (2019).

    Article  Google Scholar 

  25. E. V. Naydenkin, I. V. Ratochka, O. N. Lykova, and I. P. Mishin, J. Mater. Sci., 55 (22), 9237 (2020).

    Article  ADS  Google Scholar 

  26. I. V. Ratochka, I. P. Mishin, O. N. Lykova, and E. V. Naydenkin, Mater. Sci. Eng. A, 803, 140511 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ratochka.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratochka, I.V., Naydenkin, E.V., Mishin, I.P. et al. Influence of Low-Temperature Superplastic Deformation on the Structural-Phase State and Mechanical Properties of the Ultrafine-Grained VT22 Alloy. Russ Phys J 66, 385–390 (2023). https://doi.org/10.1007/s11182-023-02951-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02951-y

Keywords

Navigation