Skip to main content
Log in

Features of Shear Crack Growth Dynamics in Heterogeneous Brittle Materials

  • Published:
Russian Physics Journal Aims and scope

The paper is devoted to the study of dynamic growth of shear cracks in brittle materials with various degrees of inhomogeneity of the internal structure. The study was carried out by DEM modeling using an advanced model of fracture based on the principles of kinetic theory of strength and taking into account the finite time of local fracture. The complexity of the material internal structure was effectively taken into account by changing the key parameter of the model – the fracture incubation time. It is shown that an increase in the degree of inhomogeneity of the internal structure leads to a decrease in the crack propagation velocity according to a logarithmic law. The key result of the research is the assessment of the size of fracture process zone. It is shown that the size of fracture process zone is not constant, but changes during dynamic crack growth. The nature of its change, as well as the average value, depends on the degree of heterogeneity of the material structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Albertini, M. Lebihain, F. Hild, et al., Phys. Rev. Lett., 127, 035501 (2021).

    Article  ADS  Google Scholar 

  2. M. Lebihain, J.-B. Leblond, and L. Ponson, J. Mech. Phys. Solids, 137, 103876 (2020).

    Article  MathSciNet  Google Scholar 

  3. M. Z. Hossain, C. J. Hsueh, B. Bourdin, et al., J. Mech. Phys. Solids, 71, 15 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. N. Wang and S. Xia, J. Mech. Phys. Solids, 98, 87 (2017).

    Article  ADS  Google Scholar 

  5. Y. Rao, M. Xiang and J. Cui, J. Mech. Phys. Solids, 159, 104752 (2022).

    Article  Google Scholar 

  6. Y. V. Petrov and A. A. Utkin, Soviet Mater. Sci., 25(2), 153 (1989).

    Article  Google Scholar 

  7. Y. Petrov, N. F. Morozov, and V. I. Smirnov, Fatigue Fract. Eng. Mater. Struct., 26 (4), 363 (2003).

    Article  Google Scholar 

  8. A. S. Grigoriev, E. V. Shilko, V. A. Skripnyak, et al., Int. J. Impact Eng., 123, 14 (2019).

    Article  Google Scholar 

  9. A. S. Grigoriev, A. V. Zabolotskiy, E. V. Shilko, et al., Materials, 14, 7376 (2021).

    Article  ADS  Google Scholar 

  10. S. G. Psakhie, E. V. Shilko, A. S. Grigoriev, et al., Eng. Fract. Mech., 130, 96 (2014).

    Article  Google Scholar 

  11. E. V. Shilko, S. G. Psakhie, S. Schmauder, et al., Comput. Mater. Sci., 102, 267 (2015).

    Article  Google Scholar 

  12. E. Bouchbinder, T. Goldman, and J. Fineberg, Rep. Prog. Phys., 77, 046501 (2014).

    Article  ADS  Google Scholar 

  13. J. R. Willis and A. B. Mochvan, J. Mech. Phys. Solids, 43, 319 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Obrezanova, A. B. Movchan, and J. R. Willis, J. Mech. Phys. Solids, 50, 57 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Svetlizky, D. S. Kammer, and E. Bayart, Phys. Rev. Lett., 118, 125501 (2017).

    Article  ADS  Google Scholar 

  16. C.-Y. Ke, G. C. McLaskey, and D. S. Kammer, Geophys. J. Int., 224, 581 (2021).

    Article  ADS  Google Scholar 

  17. S. G. Psakhie, E. V. Shilko, M. V. Popov, et al., Phys. Rev. E, 91, 063302 (2015).

    Article  ADS  Google Scholar 

  18. M. Wang, M. Adda-Bedia, J. M. Kolinski, et al., J. Mech. Phys. Solids, 161, 104795 (2022).

    Article  Google Scholar 

  19. E. V. Shilko, S. G. Psakhie, and V. L. Popov, Procedia Struct. Integr., 2, 409 (2016).

    Article  Google Scholar 

  20. V. Rubino, A. J. Rosakis, and N. Lapusta, Nat. Commun., 8, 15991 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Grigoriev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, A.S. Features of Shear Crack Growth Dynamics in Heterogeneous Brittle Materials. Russ Phys J 65, 2216–2223 (2023). https://doi.org/10.1007/s11182-023-02893-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02893-5

Keywords

Navigation