Skip to main content
Log in

Simulation of Dynamic Crack Initiation Based on the Peridynamic Numerical Model and the Incubation Time Criterion

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Dynamic brittle fracture under high-rate loading conditions is analyzed. A new numerical algorithm based on peridynamic approach and structural–temporal model of fracture is used to predict the start of a crack in glassy polymer samples. The results of calculations are compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 25, 247 (1984). https://doi.org/10.1007/BF00963460

    Article  Google Scholar 

  2. K. Ravi-Chandar and W. G. Knauss, Int. J. Fract. 26, 141 (1984). https://doi.org/10.1007/BF01157550

    Article  Google Scholar 

  3. G. Irwin, J. Appl. Mech. 24, 361 (1957).

    Google Scholar 

  4. A. J. Rosakis and G. Ravichandran, Int. J. Solids Struct. 37 (1–2), 331 (2000). https://doi.org/10.1016/S0020-7683(99)00097-9

    Article  Google Scholar 

  5. G. Johnson and W. Cook, Eng. Fract. Mech. 21 (1), 31 (1985). https://doi.org/10.1016/0013-7944(85)90052-9

    Article  Google Scholar 

  6. R. Panchadhara and P. A. Gordon, Int. J. Fract. 201 (1), 81 (2016). https://doi.org/10.1007/s10704-016-0124-8

    Article  Google Scholar 

  7. Y. V. Petrov and A. A. Utkin, Sov. Mater. Sci. 25 (2), 153 (1989). https://doi.org/10.1007/BF00780499

    Article  Google Scholar 

  8. Yu. V. Petrov, Dokl. Akad. Nauk SSSR 321 (1), 66 (1991).

    Google Scholar 

  9. Yu. V. Petrov and E. V. Sitnikova, Tech. Phys. 49 (1), 57 (2004). https://doi.org/10.1134/1.1642679

    Article  Google Scholar 

  10. Y. V. Petrov, B. L. Karihaloo, V. V. Bratov, and A. M. Bragov, Int. J. Eng. Sci. 61, 3 (2009). https://doi.org/10.1016/j.ijengsci.2012.06.004

    Article  Google Scholar 

  11. N. A. Kazarinov, V. A. Bratov, and Y. V. Petrov, J. Phys.: Conf. Ser. 653 (1), 012050 (2015). https://doi.org/10.1088/1742-6596/653/1/012050

    Article  Google Scholar 

  12. S. A. Silling, J. Mech. Phys. Solids 48 (1), 175 (2000). https://doi.org/10.1016/S0022-5096(99)00029-0

    Article  ADS  MathSciNet  Google Scholar 

  13. S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, J. Elasticity 88, 151 (2007). https://doi.org/10.1007/s10659-007-9125-1

    Article  MathSciNet  Google Scholar 

  14. Y. D. Ha and F. Bobaru, Int. J. Fract. 162 (1–2), 229 (2010). https://doi.org/10.1007/s10704-010-9442-4

    Article  Google Scholar 

  15. M. L. Parks, D. J. Littlewood, J. A. Mitchell, and S.  A.  Silling, Peridigm Users’ Guide, Tech. Report SAND2012-7800 (Sandia Nat. Lab., 2012).

  16. T. Nakamura, C. F. Shih, and L. B. Freund, Int. J. Fract. 27, 229 (1985). https://doi.org/10.1007/BF00017970

    Article  Google Scholar 

  17. E. Madenci and E. Oterkus, Peridynamic Theory and Its Applications (Springer, New York, 2014).

    Book  Google Scholar 

  18. Handbook of Peridynamic Modeling, Ed. by F. Bobaru, J. T. Foster, P. H. Geubelle, and S. A. Silling (CRC, Boca Raton, 2016).

    MATH  Google Scholar 

  19. Y. V. Petrov and N. F. Morozov, J. Appl. Mech. 61, 710 (1994). https://doi.org/10.1115/1.2901518

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. E. Oterkus, professor at the University of Strathclyde and the head of the Peridynamic Research Center (Glasgow, United Kingdom) for support in the development of the numerical peridynamic model used in this study, as well as to I.V. Mikhnovich for cooperation in writing the software code.

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 20-01-00291 and 19-31-60037). Sections 1 and 3 were written by Yu.V. Petrov under the support of the Russian Science Foundation, project no. 17-11-01053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Ignatiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatiev, M.O., Petrov, Y.V. & Kazarinov, N.A. Simulation of Dynamic Crack Initiation Based on the Peridynamic Numerical Model and the Incubation Time Criterion. Tech. Phys. 66, 422–425 (2021). https://doi.org/10.1134/S1063784221030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030099

Navigation