Skip to main content
Log in

Molecular Dynamic Study of Thermal Conductivity of Quasi-One-Dimensional Silicon Polyprismane

  • Published:
Russian Physics Journal Aims and scope

The thermal conductivity of silicon polyprismanes with sections in the form of regular pentagons and hexagons is studied by the method of nonequilibrium molecular dynamics. The Tersoff potential is used to model interatomic interactions. The thermal conductivity of the polyprismanes is calculated depending on their length and temperature, as well as the temperature difference at the ends of the polyprismanes. It is established that silicon polyprismanes are stable up to a temperature of 550 K, after which they start melting. The amount of heat transferred through the polyprismanes is proportional to the time and temperature difference, but does not depend on the length of the system, if this length is in the range of 10–25 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Minyaev, V. I. Minkin, T. N. Gribanova, et al., J. Organic Chem., 68, No. 22, 8588 (2003).

    Article  Google Scholar 

  2. E. G. Lewars, Modeling Marvels: Computational Anticipation of Novel Molecules, Springer Science & Business Media (2008).

  3. M. M. Maslov, K. S. Grishakov, M. A. Gimaldinova, et al., Fuller., Nanotubes Carbon Nanostruct., 28, No. 2, 97 (2020).

  4. M. A. Gimaldinova, K. P. Katin, M. A. Salem, et al., Lett. Mater., 8, No. 4, 454 (2018).

    Article  Google Scholar 

  5. A. Hirsch, Angewandte Chem. Int. Ed., 41, No. 11, 1853 (2002).

    Article  Google Scholar 

  6. E. Perim, R. Paupitz, T. Botari, et al., Phys. Chem. Chem. Phys., 16, No. 44, 24570 (2014).

    Article  Google Scholar 

  7. K. P. Katin, K. S. Grishakov, M. A. Gimaldinova, et al., Comput. Mater. Sci., 174, 109480 (2020).

    Article  Google Scholar 

  8. D. Sergeyev, Adv. Nano Res., 10, No. 5, 471 (2021).

    Google Scholar 

  9. S. Kuzmin and W. W. Duley, Phys. Lett. A, 374, No. 11–12, 1374 (2010).

    Article  ADS  Google Scholar 

  10. S. Kuzmin and W. W. Duley, Fuller., Nanotubes Carbon Nanostruct., 20, No. 8, 730 (2012).

  11. K. P. Katin, S. A. Shostachenko, A. I. Avkhadieva, et al., Adv. Phys. Chem., 2015, 506894 (2015).

    Article  Google Scholar 

  12. A. Poater, A. G. Saliner, L. Cavallo, et al., Current Med. Chem., 19, No. 30, 5219 (2012).

    Google Scholar 

  13. A. Poater, A. G. Saliner, M. Solà, et al., Expert Opinion on Drug Delivery, 7, No. 3, 295 (2010).

    Article  Google Scholar 

  14. A. Poater, A. G. Saliner, R. Carbó-Dorca, et al., J. Comput. Chem., 30, No. 2, 275 (2009).

    Article  Google Scholar 

  15. A. Equbal, S. Srinivasan, and N. Sathyamurthy, J. Chem. Sci., 129, No. 7, 911 (2017).

    Article  Google Scholar 

  16. S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, et al., Phys. Solid State, 57, No. 5, 1023 (2015).

    Article  ADS  Google Scholar 

  17. K. P. Katin, M. M. Maslov, et al., Mol. Simulat., 44, No. 9, 703 (2018).

    Article  Google Scholar 

  18. S. Manzetti, T. Lu, H. Behzadi, et al., RSC Adv., 5, No. 95, 78192 (2015).

    Article  ADS  Google Scholar 

  19. K. P. Katin, M. B. Javan, M. M. Maslov, et al., Chem. Phys., 487, 59 (2017).

    Article  Google Scholar 

  20. H. Vach, Nano Lett., 11, No. 12, 5477 (2011).

    Article  ADS  Google Scholar 

  21. M. Motamedi, E. Safdari, and M. Nikzad, Int. Commun. Heat Mass Transfer, 129, 105692 (2021).

    Article  Google Scholar 

  22. Y. W. Tang, Z. Huang, X. Wang, et al., J. Comput. Theor. Nanosci., 3, No. 5, 824 (2006).

    Article  Google Scholar 

  23. H. J. Shen, Comput. Mater. Sci., 47, No. 1, 220 (2009).

    Article  MathSciNet  Google Scholar 

  24. P. Erhart and K. Albe, Phys. Rev. B, 71, No. 3, 035211.1 (2005).

  25. X. Zhang, H. Nguyen, J. T. Paci, et al., npj Comput. Mater., 7, 113 (2021).

    Article  Google Scholar 

  26. B. Liu, C. D. Reddy, J. Jiang, et al., J. Phys. D: Appl. Phys., 47, No. 16, 165301 (2014).

    Article  ADS  Google Scholar 

  27. S. Yoo, B. Lee, and K. Kang, Nanotechnology, 32, No. 29, 295702 (2021).

    Article  ADS  Google Scholar 

  28. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Superlattices and Microstructures, 54, 39 (2013).

    Article  ADS  Google Scholar 

  29. J. Jellinek and A. Goldberg, J. Chem. Phys., 113, No. 7, 2570 (2000).

    Article  ADS  Google Scholar 

  30. P. Young, The leapfrog Method and other Symplectic Algorithms for Integrating Newton’s Laws of Motion: Lecture notes in University of California, Santa Cruz (2014).

  31. K. A. Tsydenov, A Software Program for Generating Atomic Coordinates of Silicon Nanostructures, Certificate of state registration PrEVM [in Russian], Reg. No. 2021669249 as of 25.11.2021, Rospatent, Moscow (2021).

  32. M. K. Anvarifard, Z. Ramezani, I. S. Amiri, et al., Mater. Sci. Semicond. Process., 107, 104849 (2020).

    Article  Google Scholar 

  33. R. N. Salaway and L. V. Zhigilei, Int. J. Heat Mass Transfer, 70, 954 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Tsydenov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 96–102, December, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsydenov, K.A. Molecular Dynamic Study of Thermal Conductivity of Quasi-One-Dimensional Silicon Polyprismane. Russ Phys J 65, 2147–2153 (2023). https://doi.org/10.1007/s11182-023-02883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02883-7

Keywords

Navigation