Skip to main content
Log in

Changes of the Thermodynamic Properties at Isochoric and Isobaric Decrease of the Silicon Nanocrystal Size

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Equation of state P(ν/νo) and the baric dependences of the lattice and surface properties of silicon macro- and nanocrystals have been calculated using the method of calculation of crystal properties from the pair Mie–Lennard-Jones interatomic potential and the RP-model of nanocrystal. The isothermal dependences of P(ν/νo) for the macro- and the nanocrystal are shown to be intersected at a certain value of relative volume (ν/νo)0. The surface pressure becomes zero at the intersection point (at (ν/νo)0). The value of (ν/νo)0 decreases upon isomorphic–isomeric increase in temperature and also at isomorphic–isothermic decrease in the number of atoms N in the nanocrystal, or at isomeric–isothermic deviation of the nanocrystal shape from the most energetically optimal shape (in the RP-model, this shape is a cube). The obtained equation of state is used to study the changes of the silicon properties at isochoric (ν/νo = 1) and also isobaric (P = 0) decrease in N at temperatures 300 and 1000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Q. S. Mei and K. Lu, Progr. Mater. Sci. 52, 1175 (2007). https://doi.org/10.1016/j.pmatsci.2007.01.001

    Article  Google Scholar 

  2. L. Liang, M. Li, F. Qin, and Y. Wei, Philos. Mag. 93, 574 (2013). https://doi.org/10.1080/14786435.2012.725950

    Article  ADS  Google Scholar 

  3. T. Wang, W. Qi, K. Tang, and H. Peng, J. Phys. Chem. Solids 108, 1 (2017). https://doi.org/10.1016/j.jpcs.2017.04.010

    Article  ADS  Google Scholar 

  4. M. N. Magomedov, The Study of Interatomic Interaction, the Formation of Vacancies and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  5. M. N. Magomedov, Phys. Solid State 45, 32 (2003). https://doi.org/10.1134/1.1537405

    Article  ADS  Google Scholar 

  6. L. A. Girifalco, Statistical Mechanics of Solids (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  7. M. N. Magomedov, Phys. Solid State 59, 1085 (2017). https://doi.org/10.1134/S1063783417060142

    Article  ADS  Google Scholar 

  8. H. Ledbetter, M. Lei, and R. R. Ramji, Phys. B (Amsterdam, Neth.) 159, 265 (1989). 10.1016/0921-4526(89)90005-7

  9. M. N. Magomedov, Tech. Phys. 55, 1373 (2010). https://doi.org/10.1134/S1063784210090240

    Article  Google Scholar 

  10. E. N. Akhmedov, J. Phys. Chem. Solids 121, 62 (2018). https://doi.org/10.1016/j.jpcs.2018.05.011

    Article  ADS  Google Scholar 

  11. M. N. Magomedov, Tech. Phys. 59, 1658 (2014). https://doi.org/10.1134/S106378421411019X

    Article  Google Scholar 

  12. M. N. Magomedov, Russ. J. Inorg. Chem. 49, 1906 (2004).

    Google Scholar 

  13. M. N. Magomedov, Tech. Phys. Lett. 39, 409 (2013). https://doi.org/10.1134/S1063785013050076

    Article  ADS  Google Scholar 

  14. P. Sharma and S. Ganti, J. Mater. Res. 18, 1823 (2003). https://doi.org/10.1557/JMR.2003.0253

    Article  ADS  Google Scholar 

  15. V. M. Huxter, A. Lee, S. S. Lo, and G. D. Scholes, Nano Lett. 9, 405 (2008). https://doi.org/10.1021/nl803275a

    Article  ADS  Google Scholar 

  16. C. J. Bhatt and K. Kholiya, Indian J. Pure Appl. Phys. 52, 604 (2014). http://nopr.niscair.res.in/handle/123456789/29354

    Google Scholar 

  17. T. Middelmann, A. Walkov, G. Bartl, and R. Schodel, Phys. Rev. B 92, 174113 (2015). https://doi.org/10.1103/PhysRevB.92.174113

    Article  ADS  Google Scholar 

  18. E. F. Pichugin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 77 (1962).

  19. P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Philos. Mag. 4, 273 (1959). https://doi.org/10.1080/14786435908233340

    Article  ADS  Google Scholar 

  20. W. B. Gauster, Phys. Rev. B 4, 1288 (1971). https://doi.org/10.1103/physrevb.4.1288

    Article  ADS  Google Scholar 

  21. V. M. Glazov and A. S. Pashinkin, High Temp. 39, 413 (2001). https://doi.org/10.1023/A:1017562709942

    Article  Google Scholar 

  22. A. F. Goncharov, Sov. Phys. Usp. 30, 525 (1987).

    Article  ADS  Google Scholar 

  23. I. V. Aleksandrov, A. F. Goncharov, A. N. Zisman, and S. M. Stishov, Sov. Phys. JETP 66, 384 (1987).

    Google Scholar 

  24. Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Florida: CRC Press, Boca Raton, 1996).

    Google Scholar 

  25. T. C. Pandya, N. A. Thakar, and A. D. Bhatt, J. Phys.: Conf. Ser. 377, 012097 (2012). https://doi.org/10.1088/1742-6596/377/1/012097

    Google Scholar 

  26. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian]. 294 s.

  27. A. A. Stekolnikov and F. Bechstedt, Phys. Rev. B 72, 125326 (2005). https://doi.org/10.1103/PhysRevB.72.125326

    Article  ADS  Google Scholar 

  28. I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elasticity Modules of Metals and Non-Metals (Naukova Dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  29. J. J. Wortman and R. A. Evans, J. Appl. Phys. 36, 153 (1965). https://doi.org/10.1063/1.1713863

    Article  ADS  Google Scholar 

  30. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, J. Microelectromech. Syst. 19, 229 (2010). https://doi.org/10.1109/JMEMS.2009.2039697

    Article  Google Scholar 

  31. M. N. Magomedov, Tech. Phys. 53, 1051 (2008). https://doi.org/10.1134/S1063784208080124

    Article  Google Scholar 

  32. M. N. Magomedov, Tech. Phys. Lett. 42, 761 (2016). https://doi.org/10.1134/S1063785016070245

    Article  ADS  Google Scholar 

  33. E. I. Givargizov, Growth of Filamentary and Plate Crystals from the Vapor (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  34. M. Ya. Gamarnic, Phys. Status Solidi B 161, 457 (1990). https://doi.org/10.1002/pssb.2221610202

    Article  ADS  Google Scholar 

  35. M. Ya. Gamarnic, Phys. Rev. B 54, 2150 (1996). https://doi.org/10.1103/PhysRevB.54.2150

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to E.N. Akhmedov, S.P. Kramynin, N.Sh. Gazanova, and Z.M. Surkhaeva for useful discussions and their help in this study.

FUNDING

This work was supported by the Russian Foundation for Basic research (project no. 18-29-11013_mk) and the program no. I.13 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. Changes of the Thermodynamic Properties at Isochoric and Isobaric Decrease of the Silicon Nanocrystal Size. Phys. Solid State 61, 642–649 (2019). https://doi.org/10.1134/S106378341904019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341904019X

Navigation