Skip to main content
Log in

Superconductive Nb3Sn Coatings Synthesized for Charged-Particle Accelerators Using Magnetron Sputtering

  • Published:
Russian Physics Journal Aims and scope

The paper considers the formation mechanisms of triniobium tin coatings during their deposition by magnetron sputtering using a stoichiometric target. The optimum mode is identified for the magnetron source operation. Investigated are the elemental and phase compositions, coating microstructure, and its change during the high-temperature annealing. It is found that magnetron sputtering coatings deposited in the vacuum chamber at 0.3 Pa and annealed at 800°C, possess the optimum elemental and phase compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Posen and D. L. Hall, Supercond. Sci. Technol., 30, No. 3, 033004 (2017).

    Article  ADS  Google Scholar 

  2. U. Pudasaini, et al., Supercond. Sci. Technol., 32, No. 4, 045008 (2019).

    Article  ADS  Google Scholar 

  3. K. Saito, Y. Kojima, T. Furuya, et al., in: Proc. 4th Workshop on RF Superconductivity, Kek, Tsukuba, Japan (1990), No. KEK-89-21.

  4. S. V. Yurevich, et al., Dokl. natsional'noi akademii nauk Belarusi, 60, No. 1, 37–40 (2016).

    Google Scholar 

  5. V. Palmieri, et al., Nucl. Instrum. Methods Phys. Res. A, 328, No. 1–2, 280–284 (1993).

    Article  ADS  Google Scholar 

  6. S. Calatroni, Physica C Supercond., 441, No. 1–2, 95–101 (2006).

    Article  ADS  Google Scholar 

  7. E. Chiaveri, et al., Proc. 6th Int. Conf. RF Superconductivity (SRF93), Newport News, VA, USA (1993), pp. 746.

  8. A. Sublet, et al., in: 5th Int. Particle Accelerator Conf., JACoW Publishing Dresden, Germany (2014), pp. 2571–2573.

    Google Scholar 

  9. A. Grassellino, A. Romanenko, D. Sergatskov, et al., Supercond. Sci. Technol., 26, No. 10, 102001 (2013).

    Article  ADS  Google Scholar 

  10. A. Godeke, Nb3Sn for Radio Frequency Cavities. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), No. LBNL-62140 (2006).

  11. R. G. Sharma, Cryogenics, 27, No. 7, 361–378 (1987).

    Article  ADS  Google Scholar 

  12. A. Godeke, Supercond. Sci. Technol., 19, No. 8, R68 (2006).

    Article  ADS  Google Scholar 

  13. S. M. Deambrosis, 6 GHz Cavities: A Method to Test A15 Intermetallic Compounds RF Properties, (2008).

  14. L. Allen, M. Beasley, R. Hammond, and J. Turneaure, IEEE Trans. Magn., 19, No. 3, 1003–1006 (1983).

    Article  ADS  Google Scholar 

  15. G. Carta, G. Rossetto, P. Zanella, and L. Crociani, in: Proc. Int. Workshop on Thin Films and New Ideas for Pushing the Limits of RF Superconductivity, Padua (2006).

  16. B. Hillenbrand, H. Martens, H. Pfister, et al., IEEE Trans. Magn., 13, No. 1, 491–495 (1977).

    Article  ADS  Google Scholar 

  17. S. Posen, et al., Supercond. Sci. Technol., 34, No. 2, 025007 (2021).

    Article  ADS  Google Scholar 

  18. A. A. Rossi, S. M. Deambrosis, and S. Stark, in: Proc. SRF, (2009), pp. 149–154.

  19. E. A. Ilyina, G. Rosaz, J. B., Descarrega et al., Supercond. Sci. Technol., 32, No. 3, 035002 (2019).

  20. M. N. Sayeed, U. Pudasaini, and E. Charles, Appl. Surf. Sci., 541, 148528 (2021).

    Article  Google Scholar 

  21. J. Vandenberg, et al., IEEE Trans. Magn., 21, No. 2, 819–822 (1985).

    Article  ADS  Google Scholar 

  22. R. Valizadeh, et al., in: Proc. IPAC'19, (2019), pp. 2818–2821.

  23. L. Xiao, et al., in: Proc. SRF'19, (2019), pp. 846–847.

  24. J. Han, et al., Appl. Radiat. Isot., 68, No. 9, 1699–1702 (2010).

    Article  Google Scholar 

  25. T. Nasu, et al., J. Non Cryst. Solids, 232–234, 594–599 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Yurjev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 191–198, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurjev, Y.N., Bordulev, Y.S., Kharisova, A.E. et al. Superconductive Nb3Sn Coatings Synthesized for Charged-Particle Accelerators Using Magnetron Sputtering. Russ Phys J 65, 1996–2003 (2023). https://doi.org/10.1007/s11182-023-02861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02861-z

Keywords

Navigation