Skip to main content
Log in

Advanced Heat-Resistant Y–Al–O and Ti–Al–C Coatings

  • Published:
Russian Physics Journal Aims and scope

The paper presents X-ray diffraction data analysis of the phase composition of heat-resistant coatings based on Ti−Al−C and Y−Al−O systems. These coatings are deposited onto molybdenum substrates using cathodic-arc deposition using two single-component titanium and aluminum cathodes in a mixture of acetylene and argon gases. It is found that the deposited coatings have the amorphous structure. After annealing, the formation of the Ti2AlC MAX phase and Ti−Al intermetallic compounds occurs in the Ti−Al−C system, whereas in the Y−Al−O system, the formation of Y2O3, YAlO3, Y4Al2O9 oxides is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, et al., J. Eur. Ceram. Soc., 39, No. 13, 3778−3787 (2019).

    Article  MathSciNet  Google Scholar 

  2. C. Gatzen, et al., Coatings, 9, No. 10, 609 (2019).

    Article  Google Scholar 

  3. L. R. Turcer, et al., J. Eur. Ceram. Soc., 38, No. 11, 3905–3913 (2018).

    Article  Google Scholar 

  4. M. W. Barsoum and M. Radovic, Annu. Rev. Mater. Res., 41, 195−227 (2011).

    Article  ADS  Google Scholar 

  5. M. Radovic and M. W. Barsoum, Am. Ceram. Soc. Bull., 92, No. 3, 20−27 (2013).

    Google Scholar 

  6. I. M. Low, ed., MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments, IGI Global, (2013).

  7. M. W. Barsoum, J. Electrochem. Soc., 8, 148−156 (2001).

    Google Scholar 

  8. X. H. Wang, Oxid. Met., 59, 303−320 (2003).

    Article  Google Scholar 

  9. M. Sundberg, Ceram. Int., 30, 1899−1904 (2004).

    Article  Google Scholar 

  10. J. W. Byeon, et al., Oxid. Met., 68, 97−111 (2007).

    Article  Google Scholar 

  11. A. Pazniak, et al., Mater. Des., 183, 108143 (2019). https://doi.org/10.1016/j.matdes.2019.108143.

  12. A. Pazniak, et al., Ceram. Int., 45, No. 2, 2020−2027 (2019). https://doi.org/10.1016/j.ceramint.2018.10.101.

    Article  Google Scholar 

  13. O. Berger, Surf. Eng., 36, No. 3, 225−267 (2020).

    Article  ADS  Google Scholar 

  14. O. Berger, Surf. Eng., 36, No. 3, 268−302 (2020).

    Article  Google Scholar 

  15. O. Berger, Surf. Eng., 36, No. 3, 303−325 (2020).

    Article  Google Scholar 

  16. P. Eklund, et al., Thin Solid Films, 518, No. 8, 1851−1878 (2010).

    Article  ADS  Google Scholar 

  17. P. Eklund, et al., J. Phys. D: Appl. Phys., 50, No. 11, 113001 (2017).

    Article  ADS  Google Scholar 

  18. Y. M. Manawi, et al., Materials, 11, No. 5, No. 5, 822–858 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Maslov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 99–106, November, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.A., Nazarov, A.Y., Ramazanov, K.N. et al. Advanced Heat-Resistant Y–Al–O and Ti–Al–C Coatings. Russ Phys J 65, 1900–1907 (2023). https://doi.org/10.1007/s11182-023-02849-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02849-9

Keywords

Navigation