Skip to main content
Log in

Determination of the Parameters of Multi-Carrier Spectrum in CdHgTe. I. A Review of Mobility Spectrum Analysis Methods

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The paper consisting of two parts presents a detailed consideration of the proposed method of discrete mobility spectrum analysis and its application for studying the parameters of charge carriers in CdHgTe. The first part of the paper is a brief review of the existing methods of the analysis of the magnetic-field dependences of the Hall coefficient and conductivity in structures with a multi-carrier spectrum. The underlying principles of various methods are considered, including the original mobility spectrum analysis proposed by Beck and Anderson, the multi-carrier fitting, and the iterative method developed by Dziuba and Górska, as well as more recent developments. The advantages, drawbacks, and limits of applicability of these methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kul’chitskii, A. Naumov, and V. Startsev, Elektronika: Nauka, Tekhnol., Biznes, No. 6 (00197), 114–121 (2020).

  2. V. S. Varavin, S. A. Dvoretskii, N. N. Mikhailov, et al., Avtometriya, 56, No. 5, 12−56 (2020).

    Google Scholar 

  3. I. D. Burlakov, Advances in Infrared Photosensors: Collection of Review Articles Dedicated to the 75th Anniversary of the Founding of NPO Orion [in Russian], NPO Orion, Moscow (2021).

    Google Scholar 

  4. Z. Dziuba, Phys. Stat. Sol. (b), 140, No. 4, 213–223 (1987).

  5. M. C. Gold and D. A. Nelson, J. Vac. Sci. Technol. A, 4, No. 4, 2040–2046 (1986).

    Article  Google Scholar 

  6. W. A. Beck and J. R. Anderson, J. Appl. Phys., 62, No. 2, 541–553 (1987).

    Article  ADS  Google Scholar 

  7. Z. Dziuba and M. Górska, J. Phys. III, 2, No. 1, 99–110 (1992).

    Google Scholar 

  8. J. Antoszewski, D. L. Seymour, L. Faraone, et al., J. Electron. Mater., 24, No. 9, 1255–1262 (1995).

    Article  ADS  Google Scholar 

  9. J. R. Meyer, C. A. Hoffman, J. Antoszewski, and L. Faraone, J. Appl. Phys., 81, No. 2, 709–713 (1997).

    Article  ADS  Google Scholar 

  10. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, J. Antoszewski, and L. Faraone, US Patent No. 5789931 (1998).

  11. J. Antoszewski, L. Faraone, I. Vurgaftman, et al., J. Electron. Mater., 33, No. 6, 673–683 (2004).

    Article  ADS  Google Scholar 

  12. J. Rothman, J. Meilhan, G. Perrais, et al., J. Electron. Mater., 35, No. 6, 1174–1184 (2006).

    Article  ADS  Google Scholar 

  13. G. A. Umana-Membreno, J. Antoszewski, L. Faraone, et al., J. Electron. Mater., 39, No. 7, 1023–1029 (2010).

    Article  ADS  Google Scholar 

  14. G. Hock, M. Glück, T. Hackbarth, et al., Thin Sol. Films., 336, No. 1–2, 141–144 (1998).

    Article  ADS  Google Scholar 

  15. S. P. Svensson, W. A. Beck, D. C. Martel, et al., J. Cryst. Growth., 111, No. 1–4, 450–455 (1991).

    Article  ADS  Google Scholar 

  16. J. Wrobel, G. A. Umana-Membreno, J. Boguski, et al., Phys. Stat. Sol. RRS, 14, No. 1, 1900604 (2020).

    Article  Google Scholar 

  17. G. A. Umana-Membreno, J. Antoszewski, and L. Faraone, Microelectron. Eng., 109, No. 9, 232–235 (2013).

    Article  Google Scholar 

  18. O. J. Pooley, A. M. Gilbertson, P. D. Buckle, et al., New J. Phys., 12, No. 5, 053022 (2010).

    Article  ADS  Google Scholar 

  19. H. Joung, I. H. Ahn, W. Yang, and D. Y. Kim, Electron. Mater. Lett., 14, No. 11, 774–783 (2018).

    Article  ADS  Google Scholar 

  20. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, et al., J. Electron. Mater., 25, No. 8, 1157–1164 (1996).

    Article  ADS  Google Scholar 

  21. J. R. Meyer, C. A. Hoffman, F. J. Bartoli, et al., Semicond. Sci. Technol., 8, No. 6S, 805–823 (1993).

    Article  ADS  Google Scholar 

  22. R. H. Sewell, C. A. Musca, J. Antoszewski, et al., J. Electron. Mater., 33, No. 6, 572–578 (2004).

    Article  ADS  Google Scholar 

  23. J. Antoszewski, C. A. Musca, J. M. Dell, and L. Faraone, J. Electron. Mater., 29, No. 6, 837–840 (2000).

    Article  ADS  Google Scholar 

  24. T. Nguen, J. Antoszewski, C. A. Musca, et al., J. Electron. Mater., 31, No. 7, 652–659 (2002).

    Article  ADS  Google Scholar 

  25. G. A. Umana-Membreno, H. Kala, J. Antoszewski, et al., J. Electron. Mater., 42, No. 11, 3108–3113 (2013).

    Article  ADS  Google Scholar 

  26. L. Mollard, G. Destefanis, J. Rothman, et al., Proc. SPIE, 6940, 69400F (2008).

    Article  Google Scholar 

  27. I. I. Izhnin, A. V. Voitsekhovskii, A. G. Кorotaev, et al., Infr. Phys. Technol., 81, No. 3, 52–58 (2017).

    Article  ADS  Google Scholar 

  28. S. P. Tobin, G. N. Pultz, E. E. Krueger, et al., J. Electron. Mater., 22, No. 8, 907–914 (1993).

    Article  ADS  Google Scholar 

  29. W. Hoerstel, A. Klimakow, R. Kramer, J. Cryst. Growth, 101, No. 1–4, 854–858 (1990).

    Article  ADS  Google Scholar 

  30. T. C. Harman, J. M. Honig, and P. Trent, J. Phys. Chem. Solids, 28, No. 10, 1995–2001 (1967).

    Article  ADS  Google Scholar 

  31. C. Fau, J. F. Dame, M. DeCarvalho, et al., Phys. Stat. Sol. (b), 125, No. 2, 831–838 (1984).

  32. J. S. Kim, D. G. Seiler, L. Colombo, and M. C. Chen, Semicond. Sci. Technol., 9, No. 9, 1696–1705 (1994).

    Article  ADS  Google Scholar 

  33. J. S. Kim, D. G. Seiler, W. F. Tseng, J. Appl. Phys., 73, No. 12, 8324–8335 (1993).

    Article  ADS  Google Scholar 

  34. P. S. Wijewarnasuriya, M. Boukerche, and J. P. Faurie, J. Appl. Phys. 67, No. 2, 859–852 (1990).

    Article  ADS  Google Scholar 

  35. D. L. Leslie-Pelecky, D. G. Seiler, M. R. Loloee, and C. L. Littler, Appl. Phys. Lett., 51, No. 23, 1916–1918 (1987).

    Article  ADS  Google Scholar 

  36. A. Zemel, Ariel Sher, D. Eger, J. Appl. Phys., 62, No. 5, 1861–1868 (1987).

  37. K. K. Parat, N. R. Taskar, I. B. Bhat, and S. K. Ghandhi, J. Cryst. Growth, 102, No. 3, 413–418 (1990).

    Article  ADS  Google Scholar 

  38. I. I. Izhnin, Electrophysical Properties of CdxHg1−xTe Associated with the Gapless State and the Gapless Semiconductor–Ordinary Semiconductor Transition [in Russian], Extended Abstract of Cand. Dis., Cand. Phys.- Math. Sci., Lviv (1983).

  39. C. A. Hoffman, J. R. Meyer, F. J. Bartoli, et al., Phys. Rev. B, 39, No. 6, 52081–5221 (1989).

    Google Scholar 

  40. I. Vurgaftman, J. R. Meyer, C. A. Hoffman, et al., J. Appl. Phys., 84, No. 9, 4966–4973 (1998).

    Article  ADS  Google Scholar 

  41. I. Vurgaftman, J. R. Meyer, C. A. Hoffman, et al., J. Electron. Mater., 28, No. 5, 548–552 (1999).

    Article  ADS  Google Scholar 

  42. J. R. Meyer, I. Vurgaftman, D. Redfern, J. Antoszewski, L. Faraone, and J. R. Lindenmuth, US Patent No. 6100704 (2000).

  43. S. Kiatgamolchai, M. Myronov, O. A. Mironov, et al., Phys. Rev. E, 66, No. 3, 036705 (2002).

    Article  ADS  Google Scholar 

  44. D. Chrastina, J. P. Hague, D. R. Leadley, J. Appl. Phys., 94, No. 10, 6583–6590 (2003).

    Article  ADS  Google Scholar 

  45. J. Antoszewski, G. A. Umana-Membreno, and L. Faraone, J. Electron. Mater., 41, No. 10, 2816–2823 (2012).

    Article  ADS  Google Scholar 

  46. H. Kala, G. A. Umana-Membreno, G. Jolley, et al., Appl. Phys. Lett., 106, No. 3, 032103 (2015).

    Article  ADS  Google Scholar 

  47. G. A. Umana-Membreno, T. B. Fehlberg, S., Kolluri et al., Appl. Phys. Lett., 98, No. 22, 222103 (2011).

  48. G. A. Umana-Membreno, S. J. Chang, M. Bawedin, et al., Sol. Stat. Electron., 113, No. 11, 109–115 (2015).

    Article  ADS  Google Scholar 

  49. W. A. Beck, US Patent No. 10551427 B2 (2020).

  50. W. A. Beck, J. Appl. Phys., 129, No. 4, 165109 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Izhnin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 106–121, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhnin, I.I., Voitsekhovskii, A.V., Korotaev, A.G. et al. Determination of the Parameters of Multi-Carrier Spectrum in CdHgTe. I. A Review of Mobility Spectrum Analysis Methods. Russ Phys J 65, 1538–1554 (2023). https://doi.org/10.1007/s11182-023-02799-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02799-2

Keywords

Navigation