Skip to main content

Three-Dimensional Mapping of Carrier Lifetime and Mobility

  • Chapter
  • First Online:
High-Z Materials for X-ray Detection

Abstract

Since the quality of CdZnTe (CZT) material for semiconductor detectors improved, it has become a widely used compound for high-resolution room temperature detectors. Today CZT detectors are used in a wide range of applications, from industrial and medical imaging to detectors used in high-energy particle physics and astrophysics. Despite the many advantages of the compound material, the material suffer from ineffective charge collection due to charge trapping, difficulty of producing large-area defect-free single crystals, material inhomogeneity, and lastly poor hole movement compared to electron movement. Different techniques exist to estimate the electron and hole mobility and lifetime inside a CZT detector. This is important not only to understand the performance of the detector in question but also to compare CZT quality of different material samples used for the detector fabrication. We will in this chapter review some of the conventional techniques used for extracting the material mobility and lifetime μτ and thereafter present the determination of 3D electron mobility and lifetime maps of a 3D position-sensitive CZT detector. The 3D maps are computed by combining μτ-extraction methods together with 3D high-resolution position and energy information provided by the detector. The 3D maps can be used as look-up tables for the model, to more precisely predict the pulse shape formation. In conclusion, the model performance is compared to real event data, showing that the model predictions are in agreement with generated pulse shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell, R., Wald, F., Canali, C., Nava, F., & Ottaviani, G. (1974). Characterization of the transport properties of halogen-doped CdTe used for gamma-ray detectors. IEEE Transactions on Nuclear Science, 21(1), 331–341.

    Article  Google Scholar 

  2. Bolotnikov, A. E., Camarda, G. S., Chen, E., Gul, R., Dedic, V., Geronimo, G. D., Fried, J., Hossain, A., MacKenzie, J. M., Ocampo, L., Sellin, P., Taherion, S., Vernon, E., Yang, G., El-Hanany, U., & James, R. B. (2016). Use of the drift-time method to measure the electron lifetime in long-drift-length CdZnTe detectors. Journal of Applied Physics, 120(10), 104507.

    Article  Google Scholar 

  3. Boucher, Y. A., Zhang, F., Kaye, W., & He, Z. (2012). New measurement technique for the product of the electron mobility and mean free drift time for pixelated semiconductor detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 671, 1–5.

    Article  Google Scholar 

  4. Budtz-Jorgensen, C., Kuvvetli, I., Skogseide, Y., Ullaland, K., & Ostgaard, N. (2009). Characterization of CZT detectors for the ASIM mission. IEEE Transactions on Nuclear Science, 56(4), 1842–1847.

    Article  Google Scholar 

  5. Budtz-Jørgensen, C., & Kuvvetli, I. (2017). New position algorithms for the 3D CZT drift detector. IEEE Transactions on Nuclear Science, 64(6), 1611–1618.

    Google Scholar 

  6. Burrows, D. N., Hill, J. E., Nousek, J., Kennea, J. A., Wells, A., Osborne, J. P., & Hartner, G. D. (2005). The swift x-ray telescope. Space Science Reviews, 120(3), 165–195.

    Article  Google Scholar 

  7. Burshtein, Z., Jayatirtha, H., Burger, A., Butler, J., Apotovsky, B., & Doty, F. (1993). Charge-carrier mobilities in Cd0. 8Zn0. 2Te single crystals used as nuclear radiation detectors. Applied Physics Letters, 63(1), 102–104.

    Article  Google Scholar 

  8. Eisen, Y. (1996). Current state-of-the-art industrial and research applications using room-temperature CdTe and CdZnTe solid state detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 380(1–2), 431–439.

    Article  Google Scholar 

  9. Eisen, Y., Shor, A., & Mardor, I. (1999). CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 428(1), 158–170.

    Article  Google Scholar 

  10. Erickson, J., Yao, H., James, R., Hermon, H., & Greaves, M. (2000). Time of flight experimental studies of CdZnTe radiation detectors. Journal of Electronic Materials, 29(6), 699–703.

    Article  Google Scholar 

  11. He, Z. (2001). Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 463(1–2), 250–267.

    Article  Google Scholar 

  12. He, Z., Knoll, F., & Wehe, D. K. (1998). Direct measurement of product of the electron mobility and mean free drift time of CdZnTe semiconductors using position sensitive single polarity charge sensing detectors. Journal of Applied Physics, 94(10), 5566–5569.

    Article  Google Scholar 

  13. He, Z., Knoll, G., Wehe, D., & Miyamoto, J. (1997). Position-sensitive single carrier CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 388(1–2), 180–185.

    Article  Google Scholar 

  14. He, Z., Knoll, G. F., Wehe, D. K., Rojeski, R., Mastrangelo, C. H., Hammig, M., Barrett, C., & Uritani, A. (1996). 1-D position sensitive single carrier semiconductor detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 380(1–2), 228–231.

    Article  Google Scholar 

  15. He, Z., Li, W., Knoll, G., Wehe, D., & Stahle, C. (2000). Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 441(3), 459–467.

    Article  Google Scholar 

  16. Hecht, K. (1932). Zum mechanismus des lichtelektrischen primärstromes in isolierenden kristallen. Zeitschrift für Physik, 77(3–4), 235–245.

    Article  Google Scholar 

  17. Knoll, G. F. (2010). Radiation detection and measurement. Wiley.

    Google Scholar 

  18. Kuvvetli, I., Budtz-Jørgensen, C., Zappettini, A., Zambelli, N., Benassi, G., Kalemci, E., Caroli, E., Stephen, J. B., and Auricchio, N. (2014). A 3D CZT high resolution detector for x- and gamma-ray astronomy. In High energy, optical, and infrared detectors for astronomy VI (Vol. 9154, pp. 91540X). International Society for Optics and Photonics.

    Google Scholar 

  19. Lohstroh, A., Sellin, P., & Simon, A. (2003). High-resolution mapping of the mobility–lifetime product in CdZnTe using a nuclear microprobe. Journal of Physics: Condensed Matter, 16(2), S67.

    Google Scholar 

  20. Luke, P. (1995). Unipolar charge sensing with coplanar electrodes-application to semiconductor detectors. IEEE Transactions on Nuclear Science, 42(4), 207–213.

    Article  Google Scholar 

  21. Owe, S. H., Kuvvetli, I., & Budtz-Jørgensen, C. (2021). Carrier lifetime and mobility characterization using the DTU 3D CZT drift strip detector. IEEE Transactions on Nuclear Science, 68(9), 2440–2446. https:/doi.org/10.1109/TNS.2021.3068001

    Article  Google Scholar 

  22. Owe, S. H., Kuvvetli, I., & Budtz-Jørgensen, C. (2019). Evaluation of a Compton camera concept using the 3D CdZnTe drift strip detectors. Journal of Instrumentation, 14(1), C01020.

    Article  Google Scholar 

  23. Pamelen, M. A. J. V. & Budtz-Jørgensen, C. (1998a). CdZnTe drift detector with correction for hole trapping. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 411(1), 197–200.

    Article  Google Scholar 

  24. Pamelen, M. A. J. V. & Budtz-Jørgensen, C. (1998b). Novel electrode geometry to improve performance of CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 403(2–3), 390–398.

    Article  Google Scholar 

  25. Ramo, S. (1939). Currents induced by electron motion. Proceedings of the IRE, 27(9), 584–585.

    Article  Google Scholar 

  26. Rana, V. R., III, W. R. C., Harrison, F. A., Mao, P. H., & Miyasaka, G. (2009). Development of focal plane detectors for the nuclear spectroscopic telescope array (NuSTAR) mission. In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVI (Vol. 7435, pp. 743503). International Society for Optics and Photonics.

    Google Scholar 

  27. Schlesinger, T. E. & James, R. B. (1995). Semiconductors for room temperature nuclear detector applications. In Semiconductors and Semimetals (p. 43).

    Google Scholar 

  28. Schroder, D. K. (2006). Semiconductor material and device characterization (3rd ed.). Wiley.

    Google Scholar 

  29. Sellin, P., Davies, A., Lohstroh, A., Ozsan, M., & Parkin, J. (2005). Drift mobility and mobility-lifetime products in CdTe: Cl grown by the travelling heater method. IEEE Transactions on Nuclear Science, 52(6), 3074–3078.

    Article  Google Scholar 

  30. Shockley, W. (1938). Currents to conductors induced by a moving point charge. Journal of Applied Physics, 9(10), 635–636.

    Article  Google Scholar 

  31. Suzuki, K., Seto, S., Sawada, T., & Imai, K. (2002). Carrier transport properties of HPB CdZnTe and THM CdTe: Cl. IEEE Transactions on Nuclear Science, 49(3), 1287–1291.

    Article  Google Scholar 

  32. Sze, S. M. (2006). Semiconductor devices: Physics and technology (3rd ed.). Wiley.

    Book  Google Scholar 

  33. Takahashi, T., & Watanabe, S. (2001). Recent progress in CdTe and CdZnTe detectors. IEEE Transactions on Nuclear Science, 48(4), 950–959.

    Article  Google Scholar 

  34. Verger, L., Baffert, N., Rosaz, M., & Rustique, J. (1996). Characterization of CdZnTe and CdTe: Cl materials and their relationship to x- and γ-ray detector performance. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 380(1–2), 121–126.

    Article  Google Scholar 

  35. Zanio, K., Akutagawa, W., & Kikuchi, R. (1968). Transient currents in semi-insulating CdTe characteristic of deep traps. Journal of Applied Physics, 39(6), 2818–2828.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selina R. H. Owe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owe, S.R.H., Kuvvetli, I., Budtz-Jørgensen, C. (2023). Three-Dimensional Mapping of Carrier Lifetime and Mobility. In: Abbene, L., Iniewski, K.(. (eds) High-Z Materials for X-ray Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-20955-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20955-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20954-3

  • Online ISBN: 978-3-031-20955-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics