Skip to main content
Log in

Reflection Coefficient from Multilayer Soil Structures in the Microwave Range with Changing Moisture and Layer Design

  • Published:
Russian Physics Journal Aims and scope

A method for modeling the electromagnetic response from multilayer soil structures, taking into account the temperature, frequency, and structural properties of materials, is presented. The results of modeling of a three-layer soil structure consisting of layers of loam with different thicknesses and clay are given. The moisture content of the layers varied from 0 to 80 vol.%. The fact of different realizations of the properties of layers with close values of the reflection coefficient in certain frequency regions is shown. Options for overcoming this ambiguity are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Du, J. D. Watts, L. Jiang, et al., Remote Sens., 11, No. 16, 1952-1–1952-6 (2019).

  2. P. P. Bobrov, T. A. Belyaeva, and O. V. Rodionova, Eurasian Soil Science, No. 7, 822–833 (2019).

    Google Scholar 

  3. M. Sadeghi, S. B. Jones, and W. D. Philpot, Remote Sens. Environ., 164, 66–76 (2015).

    Article  ADS  Google Scholar 

  4. Q. Zhang and G. Zhou, Sensors, 16, 130 (2016).

    Article  ADS  Google Scholar 

  5. P.P. Bobrov, A.V. Repin, and O. V. Rodionova, IEEE Trans. Geosci. Remote Sens., 53, No. 5, 2366–2372 (2015).

    Article  ADS  Google Scholar 

  6. I. Molina, A. Calabia, S. Jin, et al., Remote Sens., 14, No. 14, 3262 (2022).

    Article  ADS  Google Scholar 

  7. V. P. Yakushev and V. V. Yakushev, Vestnik Rossiiskoi Akademii Nauk, 88, No. 9, 773–784 (2018).

    Google Scholar 

  8. M. M. Salih, A. N. Mohsin AL-hameedawi, S. S. Mahmod, J. Babylon University Engineering Sciences, 25, No. 2, 617–631 (2017).

  9. L. G. Kolesnichenko, S. N. Kirpotin, et al., IOP Conf. Ser.: Earth and Environmental Science, 232, 012021-1–012021-8 (2019).

  10. A. A. Sharafutdinov, S. A. Imamutdinov, A. N. Mukhametyanova, et al., Setevoe Izd. Neftegs. Delo, No. 2, 99–116 (2018).

  11. V. A. Zhuravlev, V. I. Suslyaev, A. V. Zhuravlev, and E. Yu. Korovin, Russ. Phys. J., 60, No. 11, 1893–1900 (2018).

    Article  Google Scholar 

  12. V. I. Suslyaev, P. F. Tarasenko, A. V. Zhuravlev, and V. A. Zhuravlev, Russ. Phys. J., 42, No. 11, 935–941 (1999).

    Article  Google Scholar 

  13. V. L. Mironov, L. G. Kosolapova, and S. V. Fomin, IEEE Trans. Geosci. Remote Sens., 47, No. 7, 2059–2070 (2009).

    Article  ADS  Google Scholar 

  14. A. G. Dyukarev and N. N. Pologova, Vestn. Tomsk. Gosud. Univer. Biologiya, No. 3(35), 6–25 (2016).

  15. S. V. Loiko, L. I. Geras’ko, S. P. Kulizhskii, et al., Pochvoved., No. 4, 410–423 (2015).

  16. L. M. Brekhovskikh, Waves in Layered Media [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  17. G. Frohlich, Theory of Dielectrics. Dielectric Constant and Dielectric Loss [Russian translation], IL, Moscow (1960).

  18. I. N. Sadovskii, A. V. Kuz’min, E. L. Sharkov, et al., Analysis of Models of Dielectric Permittivity of Aquatic Environment used in the Problems of Remote Sensing of Water Areas [in Russian], IKI RAN, Moscow (2013).

  19. A. Stogrin, IEEE Trans. Microwave Theory and Techniques, 19, No. 8, 733–736 (1971).

    Article  ADS  Google Scholar 

  20. V. G. Edvabnik, Sovrem. Problem. Nauki i Obrazov., No. 1–2, C. 76 (2015).

  21. T. Zakri, J.-P. Laurent, and M. Vauclin, J. Phys. D: Appl. Phys., 31, 1589–1594 (1998).

    Article  ADS  Google Scholar 

  22. N. N. Kosyrev, M. A. Volkova, T. D. Kochetkova, and O. A. Ul’yanova, Int. Agricultur. J., No. 1, 341–353 (2022).

  23. P. P. Bobrov, V. N. Krasnoukhova, E. S. Kroshka, and A. S. Lapina, Russ. Phys. J., 60, No. 4, 711–716 (2017).

    Article  Google Scholar 

  24. V. L. Mironov, P. P. Bobrov, S. V. Fomin, and A. Yu. Karavaiskii, Russ. Phys. J., 56, No. 3, 319–324 (2013).

    Article  Google Scholar 

  25. V. I. Suslyaev, V. A. Zhuravlev, E. Yu. Korovin, et al., Proc. SPIE, 10833, 108333-3–108333-4 (2018).

  26. A. Kate, Zolotodobycha, No. 257, 6–10 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pavlova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 60–67, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, A.A., Suslyaev, V.I. & Zhuravlev, V.A. Reflection Coefficient from Multilayer Soil Structures in the Microwave Range with Changing Moisture and Layer Design. Russ Phys J 65, 1482–1489 (2023). https://doi.org/10.1007/s11182-023-02794-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02794-7

Keywords

Navigation