Skip to main content
Log in

Comparative Theoretical Analysis of Harmonic Generation in Free-Electron Lasers with Different Electron Beam Parameters

  • Published:
Russian Physics Journal Aims and scope

Generation of harmonics, in particular, odd ones, in free-electron lasers (FELs) has been studied. The obtained theoretical results are compared with the data available for the SPARC and LEUTL FELs. The spectral characteristics of the FELs are simulated. Theoretical results obtained by different authors for the harmonic powers are compared with the data available for the SPARC and LEUTL FELs. The influence of such FEL parameters, as the emmittance and the finite beam cross section on harmonic generation is analyzed together with betatron oscillations originating from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys., 24, 826 (1953).

    Article  Google Scholar 

  2. V. L. Ginzburg, Izv. Ross. Akad. Nauk. Ser. Fiz., 11, 1651 (1947).

    Google Scholar 

  3. J. M. Madey, J. Appl. Phys., 42, 1906 (1971).

    Article  ADS  Google Scholar 

  4. B. W. J. McNeil and N. R. Thompson, Nature Photon., 4, 814 (2010).

    Article  ADS  Google Scholar 

  5. C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys., 88, 015006 (2016).

    Article  ADS  Google Scholar 

  6. P. Schmüser, M. Dohlus, J. Rossbach, and C. Behrens, Free-Electron Lasers in the Ultraviolet and X-Ray Regime, Springer International Publishing (2014).

  7. Z. Huang and K. J. Kim, Phys. Rev. ST-AB, 10, 034801 (2007).

    ADS  Google Scholar 

  8. G. Margaritondo and P. R. Ribic, J. Synchrotron Rad., 18, 101 (2011).

    Article  Google Scholar 

  9. E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron Lasers, Springer Verlag, Berlin; Heidelberg (2000).

  10. R. Bonifacio, C. Pellegrini, and L. Narducci, Opt. Commun., 50, 373 (1984).

    Article  ADS  Google Scholar 

  11. G. Margaritondo, Rivista del Nuovo Cimento, 40, No. 9, 411 (2017).

    ADS  Google Scholar 

  12. V. G. Bagrov, G. S. Bisnovatyi-Kogan, V. A. Bordovitsyn, et al., Theory of Radiation of Relativistic Particles [in Russian], Fizmatlit, Moscow (2002).

    Google Scholar 

  13. I. M. Ternov, V. V. Mikhailin, and V. R. Halilov, Synchrotron Radiation and Its Applications [in Russian], Moscow State University Publishing House, Moscow (1980).

    Google Scholar 

  14. G. Margaritondo, Synchrotron Radiation, S. Mobilio, F. Boscherini, and C. Meneghini, eds., Springer, Berlin; Heidelberg (2015).

  15. P. Emma, R. Akre, J. Arthur, et al., Nature Photon., 4, 641 (2010).

    Article  ADS  Google Scholar 

  16. D. Ratner, A. Brachmann, F. J. Decker, et al., Phys. Rev. ST-AB, 14, 060701 (2011).

    ADS  Google Scholar 

  17. S. V. Milton, E. Gluskin, N. D. Arnold, et al., Science, 292, 2037 (2001).

    Article  ADS  Google Scholar 

  18. S. G. Biedron et al., Nucl. Instrum. Methods. Phys. Res. A, 483, 94 (2002).

    Article  ADS  Google Scholar 

  19. L. Giannessi et al., Phys. Rev. ST-AB, 14, 060712 (2011).

    ADS  Google Scholar 

  20. J. R. Henderson, L. T. Campbell, H. P. Freund, and B. W. J. McNeil, New J. Phys., 18, 062003 (2016).

    Article  ADS  Google Scholar 

  21. H. P. Freund, P. J. M. van der Slot, D. L. A. G. Grimminck, et al., New J. Phys., 19, 023020 (2017).

    Article  ADS  Google Scholar 

  22. H. P. Freund and P. J. M. van der Slot, New J. Phys., 20, 073017 (2018).

    Article  ADS  Google Scholar 

  23. K. V. Zhukovsky, Russ. Phys. J., 62, No. 6, 1043 (2019).

    Article  Google Scholar 

  24. H. P. Freund and P. J. M. van der Slot, J. Phys. Commun., 5, 085011 (2021).

    Article  Google Scholar 

  25. K. Zhukovsky and A. Kalitenko, J. Synchrotron Rad., 26, 159 (2019).

    Article  Google Scholar 

  26. K. V. Zhukovsky and A. M. Kalitenko, Russ. Phys. J., 62, No. 2, 354 (2019).

    Article  Google Scholar 

  27. A. M. Kalitenko Aand K. V. Zhukovsky, Zh. Eksp. Teor. Fiz., 157, No. 3, 394 (2020).

  28. K. V. Zhukovsky, Usp. Fiz. Nauk, 191, No, 3, 318 (2021).

    Article  Google Scholar 

  29. K. Zhukovsky, Opt. Laser Technol., 131, 106311 (2020).

    Article  Google Scholar 

  30. K. Zhukovsky, Eur. Phys. J. Plus, 136, 714 (2021).

    Article  Google Scholar 

  31. K. Zhukovsky, Ann. Phys., 533, No. 11, 2100091 (2021).

    Article  MathSciNet  Google Scholar 

  32. K. Zhukovsky, Rad. Phys. Chem., 189, 109698 (2021).

    Article  Google Scholar 

  33. K. Zhukovsky, Results Phys., 19, 103361 (2020).

    Article  Google Scholar 

  34. K. Zhukovsky, Opt. Laser Technol., 143, 107296 (2021).

    Article  Google Scholar 

  35. K. Zhukovsky and I. Fedorov, Symmetry, 13, 135 (2021).

    Article  ADS  Google Scholar 

  36. B. Prakash, V. Huse, M. Gehlot, and G. Mishra, Optik, 127, 1639 (2016).

    Article  ADS  Google Scholar 

  37. M. Xie, Nucl. Instrum. Methods. Phys. Res. A, 445, 59 (2000).

    Article  ADS  Google Scholar 

  38. M. Xie, in: Proc. 1995 Particle Accelerator Conference, Piscataway (1995), p. 183.

    Google Scholar 

  39. G. Dattoli, P. L. Ottaviani, and S. Pagnutti, J. Appl. Phys., 97, 113102 (2005).

    Article  ADS  Google Scholar 

  40. G. Dattoli, L. Giannessi, P. L. Ottaviani, and C. Ronsivalle, J. Appl. Phys., 95, 3206 (2004).

    Article  ADS  Google Scholar 

  41. L. Giannessi et al., Synchrotron Light Sources and Free-Electron Lasers, Springer International Publishing, Switzerland (2016); DOI https://doi.org/10.1007/978-3-319-14394-1_3.

    Article  Google Scholar 

  42. R. Bonifacio, L. De Salvo, and P. Pierini, Nucl. Instrum. Methods. Phys. Res. A., 293, 627 (1990).

    Article  ADS  Google Scholar 

  43. K. V. Zhukovsky, Mosc. Univ. Phys. Bull., No. 5, 480 (2019).

  44. K. V. Zhukovsky, Russ. Phys. J., 64, No. 12, 2331 (2021).

    Article  Google Scholar 

  45. Z. Huang and K.-J. Kim, Nucl. Instrum. Methods. Phys. Res. A, 475, 112 (2001).

    Article  ADS  Google Scholar 

  46. G. Geloni, E. Saldin, E. Schneidmiller, and M. Yurkov, Opt. Commun., 271, 207 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 34–41, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Comparative Theoretical Analysis of Harmonic Generation in Free-Electron Lasers with Different Electron Beam Parameters. Russ Phys J 65, 1451–1460 (2023). https://doi.org/10.1007/s11182-023-02790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02790-x

Keywords

Navigation