Skip to main content
Log in

Influence of Equal-Channel Angular Pressing on Grain Structure and Internal Stresses of Technically Pure Nickel

  • Published:
Russian Physics Journal Aims and scope

Using transmission electron microscopy, the structure, phase composition, defects, amplitude of internal stresses and their sources are studied in the ultrafine-grained technically pure nickel produced by the method of equal-channel angular pressing (ECAP). During ECAP, the samples are subjected to shear deformation by compression along two intersecting channels of equal diameters at an angle of 120° and a temperature of T = 400°C without intermediate annealing within four passes, n = 4. An examination of the grain structure demonstrates that all grains are anisotropic. According to the dislocation structure, the grains are classified into three types: 1) the smallest grains with no substructure (practically no dislocations) – dislocation-free grains, 2) larger grains containing chaotically distributed dislocations or a net substructure, and 3) the largest grains with a cellular or fragmented substructure. The average value of the scalar dislocation density in the grains of each type is calculated. It is found out that equal-channel angular pressing results in the formation of nanosized particles of secondary phases localized inside the grains, at grain boundaries and at grain junctions of ultrafine-grained nickel. The sources of internal stresses are revealed and their amplitude is determined. The amplitude of the internal stresses is calculated using the amplitude of the crystal lattice curvature-torsion from the bending extinction contours

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys [in Russian], UrD RAS, Ekaterinburg (2003).

  2. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials [in Russian], IKC Akademkniga, Moscow (2007).

    Google Scholar 

  3. R. Z. Valiev A. P. Zhilyaev, and T. J. Langdon, Bulk Nanostructured Materials: fundamentals and application [in Russian], Eko-Vektor, St. Petersburg (2017).

  4. I. A. Ovid'ko, R. Z. Valiev, and Y. T. Zhu, Prog. Mater. Sci., 94, 462 (2018).

    Article  Google Scholar 

  5. V. D. Blank, M. Yu. Popov, B. A. Kulnitskiy, Mater. Trans., 60, No. 8, 1500 (2019).

    Article  Google Scholar 

  6. W. Skrotzki, Mater. Trans., 60, No. 7, 1331 (2019).

    Article  Google Scholar 

  7. N. Tsuji, R. Gholizadeh, R. Ueji, et al., Mater. Trans., 60, No. 8, 1518 (2019).

    Article  Google Scholar 

  8. Z. Horita, Y. Nang, T. Masuda, and Y. Takizawa, Mater. Trans., 61, No. 7, 1177 (2020).

    Article  Google Scholar 

  9. D. G. Morris and M. A. Morris, Acta Met., 39, No. 8, 1763 (1991).

    Article  Google Scholar 

  10. E. V. Kozlov, N. A. Popova, Yu. F. Ivanov, et al., Ann. Chimie: Science des Materiaux, 21, No. 6–7, 427 (1996).

    Google Scholar 

  11. A. Devaraj, W. Wang, R. Vemuri, et al., Acta Mater., 165, 698 (2019).

    Article  ADS  Google Scholar 

  12. Z. Y. Zhang, L. X. Sun, and N. R. Tao, J. Alloys Compd., 867, 159016 (2021).

    Article  Google Scholar 

  13. L. R. Rezyapova, R. R. Valiev, V. D. Sitdikov, and R. Z. Valiev, Pis’ma Mater., 11, No. 3, 345 (2021).

    Google Scholar 

  14. B. B. Straumal, R. Kulagin, B. Baretzky, et al., Crystals, 12, No. 1, 54 (2022).

    Article  Google Scholar 

  15. B. K. Kardashev, M. V. Narykova, and V. I. Betekhtin, and A. G. Kadomtsev, Physical Mesomechanics, 23, 193 (2020).

    Article  Google Scholar 

  16. J. Pinc, A. Skolakova, P. Vertat, et al., Mater. Sci. Eng., 824, 141809 (2021).

    Article  Google Scholar 

  17. A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Physical Mesomechanics, 16, 319 (2013).

    Article  Google Scholar 

  18. N. A. Koneva, L. I. Trishkina, N. A. Popova, and E. V. Kozlov, Russ. Phys. J., 57, No. 2, 187 (2014).

    Article  Google Scholar 

  19. P. B. Hirsch, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals, Butterworths, London (1965).

    Google Scholar 

  20. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970).

    Google Scholar 

  21. N. A. Koneva, E. V. Kozlov, L. I. Trishkina, and D. V. Lychagin, New Methods in Physics and Mechanic of Deformable Solids. Part I [in Russian], Tomsk (1990).

  22. N. A. Koneva and E. V. Kozlov, Russ. Phys. J., 33, No. 2, 165 (1990).

    Google Scholar 

  23. N. A. Popova, E. L. Nikonenko, Yu. V. Solovieva, and V. A. Starenchenko, VESTNIK PNIPU. Mashinostroyeniye, 23, No. 4, 15 (2021).

    Google Scholar 

  24. E. V. Kozlov, V. A. Starenchenko, and N. A. Koneva, Metally, No. 5, 152 (1993).

    Google Scholar 

  25. N. A. Koneva, D. V. Lychagin, L. A. Teplyakova, and L. I. Trishkina, Disclinations and Rotational Deformation of Solids [in Russian], Leningrad (1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Popova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 20–26, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, N.A., Nikonenko, E.L., Solov’eva, Y.V. et al. Influence of Equal-Channel Angular Pressing on Grain Structure and Internal Stresses of Technically Pure Nickel. Russ Phys J 65, 1436–1442 (2023). https://doi.org/10.1007/s11182-023-02788-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02788-5

Keywords

Navigation