Skip to main content
Log in

Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ultrafine-grained (UFG) high purity aluminum exhibits a variety of attractive mechanical properties and special deformation behavior. Equal channel angular pressing (ECAP) process can be used to easily and effectively refine metals. The microstructure and microtexture evolutions and grain boundary characteristics of the high purity aluminum (99.998%) processed by ECAP at room temperature are investigated by means of TEM and EBSD. The results indicate that the shear deformation resistance increases with repeated EACP passes, and equiaxed grains with an average size of 0.9 μm in diameter are formed after five passes. Although the orientations distribution of grains tends to evolve toward random orientations, and microtextures (80°, 35°, 0°), (40°, 75°, 45°) and (0°, 85°, 45°) peak in the sample after five passes. The grain boundaries in UFG aluminum are high-angle geometrically necessary boundaries. It is suggested that the continuous dynamic recrystallization is responsible for the formation of ultrafine grains in high purity aluminum. Microstructure evolution in the high purity aluminum during ECAP is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ESTRIN Y, MURASHKIN M, VALIEV R. Ultrafine-grained aluminum alloys: Processes, structural features and properties [C]// LUMLEY R. Fundamentals of Aluminum Metallurgy: Production, Processing and Applications. Cambridge: Woodhead Publ Ltd, 2011: 468–503.

    Chapter  Google Scholar 

  2. KUMAR S R, GUDIMETLA K, VENKATACHALAM P, RAVISANKAR B, JAYASANKAR K. Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing [J]. Materials Science and Engineering A, 2012, 533: 50–54.

    Article  Google Scholar 

  3. QIAN T, MARX M, SCHULER K, HOCKAUF M, VEHOFF H. Plastic deformation mechanism of ultra-fine-grained AA6063 processed by equal-channel angular pressing [J]. Acta Materialia, 2010, 58(6): 2112–2123.

    Article  Google Scholar 

  4. ZHAO Jun, WANG Zhen-hua, SUN Shu-hua, ZHAO De-li, REN Li-guo, FU Wan-tang. A new method of characterizing equivalent strain for equal channel angular processing [J]. Journal of Central South University of Technology, 2009, 16(3): 349–353.

    Article  Google Scholar 

  5. VEVEÇKA A, CABIBBO M, LANGDON T G. A characterization of microstructure and microhardness on longitudinal planes of an Al-Mg-Si alloy processed by ECAP [J]. Materials Characterization, 2013, 84: 126–133.

    Article  Google Scholar 

  6. ZHOU Yin-yu, LIU Fang, DU Fei-peng. Finite element analysis for effect of die parameters on deformation of equal channel angular pressing of pure titanium [J]. Journal of Materials and Metallurgy, 2014, 13(1): 66–70. (in Chinese)

    Google Scholar 

  7. HEBESBERGER T, STUWE H P, VORHAUER A, WETSCHER F, PIPPAN R. Structure of Cu deformed by high pressure torsion [J]. Acta Materialia, 2005, 53(2): 393–402.

    Article  Google Scholar 

  8. AAL M I A E, KIM H S. Wear properties of high pressure torsion processed ultrafine grained Al-7%Si alloy [J]. Materials and Design, 2014, 53: 373–382.

    Article  Google Scholar 

  9. ZHANG Zi-zhao, XU Xiao-chang, HU Nan, QU Xiao, CHEN Zhen-xiang. Re-ageing behavior of Al-Cu alloy after re-dissolution of precipitated phases caused by severe plastic deformation [J]. Journal of Central South University, 2010, 41(5): 1782–1790. (in Chinese)

    Google Scholar 

  10. WANG Bing-feng, LIU Zhao-lin, LI Juan. Microstructure evolution in AISI201 austenitic stainless steel during the first compression cycle of multi-axial compression [J]. Materials Science and Engineering A, 2013, 568: 20–24.

    Article  Google Scholar 

  11. SU Li-hong, LU Cheng, LI Hui-jun, DENG Guan-yu, TIEU K. Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding [J]. Materials Science and Engineering A, 2014, 614: 148–155.

    Article  Google Scholar 

  12. ROY S, NATARAJ B R, SUWAS S, KUMAR S, CHATTOPADHYAY K. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties [J]. Materials and Design, 2012, 36: 529–539.

    Article  Google Scholar 

  13. TALACHI A K, EIZADJOU M, MANESH H D, JANGHORBAN K. Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process [J]. Materials Characterization, 2011, 62(1): 12–21.

    Article  Google Scholar 

  14. IWAHASHI Y, HORITA Z, NEMOTO M, LANGDON T G. An investigation of microstructural evolution during equal-channel angular pressing [J]. Acta Materialia, 1997, 45(11): 4733–4741.

    Article  Google Scholar 

  15. SALEM A A, LANGDON T G, MCNELLEY T R, KALIDINDI S R, SEMIATIN S L. Strain-path effects on the evolution of microstructure and texture during the severe-plastic deformation of aluminum [J]. Metallurgical and Materials Transaction A, 2006, 37(9): 2879–2891.

    Article  Google Scholar 

  16. QU Shen, AN Xiang-hai, YANG Hua-jie, HUANG Chong-xiang, YANG Gang, ZANG Qi-shan, WANG Zhong-guang, WU Shi-ding, ZHANG Zhe-feng. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing [J]. Acta Materialia, 2009, 57(5): 1586–1601.

    Article  Google Scholar 

  17. XU W, WU X, CALIN M, STOICA M, ECKERT J, XIA K. Formation of an ultrafine-grained structure during equal-channel angular preßsing of a ß-titanium alloy with low phase stability [J]. Scripta Materialia, 2009, 60(11): 1012–1015.

    Article  Google Scholar 

  18. LIN Zheng-jie, WANG Li-qiang, XUE Xiao-bing, LU Wei-jie, QIN Ji-ning, Zhang Di. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP) [J]. Materials Science and Engineering C, 2013, 33(8): 4551–4561.

    Article  Google Scholar 

  19. CHANG J Y, YOON J S, KIM G H. Development of submicron sized grain during cyclic equal channel angular pressing [J]. Scripta Materialia, 2001, 45(3): 347–354.

    Article  Google Scholar 

  20. IWAHASHI Y, WANG Jing-tao, HORITA Z J, NEMOTO M, LANGDON T G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials [J]. Scripta Materialia, 1996, 35(2): 143–146.

    Article  Google Scholar 

  21. LIU Qing, HANSEN N. Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation [J]. Scripta Metallurgica et Materialia, 1995, 32(8): 1289–1295.

    Article  Google Scholar 

  22. DUDOVA N, BELYAKOV A, SAKAI T, KAIBYSHEV R. Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working [J]. Acta Materialia, 2010, 58(10): 3624–3632.

    Article  Google Scholar 

  23. DOHERTY R D, HUGHES D A, HUMPHREYS F J, JONAS J J, JUUL JENSEN D, KASSNER M E, KING W E, MCNELLEY T R, MCQUEEN H J, ROLLETT A D. Current issues in recrystallization: A review [J]. Materials Science and Engineering A, 1997, 238(2): 219–274.

    Article  Google Scholar 

  24. BELYAKOV A, GAO W, MIURA H, SAKAI T. Strain-induced grain evolution in polycrystalline copper during warm deformation [J]. Metallurgical and Materials Transactions A, 1998, 25(12): 2957–2965.

    Article  Google Scholar 

  25. HUMPHREYS F J, PRANGNELL P B, PRIESTNER R. Fine-grained alloys by thermomechanical processing [J]. Current Opinion in Solid State and Materials Science, 2001, 5(1): 15–21.

    Article  Google Scholar 

  26. CHENG Wei-li, LI Jia-wei, QUE Zhong-ping, ZHANG Jin-shan, XU Chun-xiang, LIANG Wei, YOU B S, PARK S S. Microstructure, texture and tensile properties of Mg-10Sn alloys extruded in different conditions [J]. Journal of Central South University, 2013, 20(7): 1786–1791.

    Article  Google Scholar 

  27. GOURDET S, MONTHEILLET F. An experimental study of the recrystallization mechanism during hot deformation of aluminum [J]. Materials Science and Engineering A, 2000, 283(1/2): 274–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-feng Wang  (汪冰峰).

Additional information

Foundation item: Project(12JJ2028) supported by the Hunan Provincial Natural Science Foundation of China; Project(201308430093) supported by the China Scholarship Council; Projects(201012200006, 2013zzts185, 2012zzts066) supported by the Freedom Explore Program of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Bf., Sun, Jy., Zou, Jd. et al. Mechanical responses, texture and microstructural evolution of high purity aluminum deformed by equal channel angular pressing. J. Cent. South Univ. 22, 3698–3704 (2015). https://doi.org/10.1007/s11771-015-2912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2912-0

Keywords

Navigation