Skip to main content

Advertisement

Log in

Effect of V, Nb, and Mo Impurities on the Stability of Titanium Phases

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The projector augmented-waves method within the density functional theory was used to perform a systematic study of the atomic and electronic structure of three phases (α, β, and α'') of titanium doped with V, Nb, and Mo depending on the impurity concentration. The features of the electronic structure caused by impurity elements are determined. The critical impurity concentrations at which structural transformations occur are established. A correlation between the critical impurity concentration and the density of valence electrons is revealed. It is shown that the β-stabilizing effect of vanadium is more pronounced than that of niobium, but weaker than that of Mo. The obtained tendencies agree well with the available experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Leyens and M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications, WILEY-VCH, Weinheim (2003).

  2. K. M. Rajan, K. S. Ashok, C. R. Bharat, et al., Mater. Today: Proc., 62, 3865–3868 (2022).

    Google Scholar 

  3. S. V. Razorenov, G. V. Garkushin, A. S. Savinykh, et al., Fiz. Mezomekh., 24, No. 3, 17–25 (2021).

    Google Scholar 

  4. V. E. Gyunter, V. V. Kotenko, M. Z. Mirgazizov, et al., Alloys with Shape Memory in Medicine [in Russian], Izd. Tomskogo Univers., Tomsk (1986).

    Google Scholar 

  5. F. H. Froes and M. Qian, Titanium in Medical and Dental Applications, Woodhead Publishing, Cambridge (2018).

    Google Scholar 

  6. E. S. Fisher and C. J. Renken, Phys. Rev., 135, No. 2A, A482–A494 (1964).

    Article  ADS  Google Scholar 

  7. T. Ando, K. Nakashima, T. Tsuchiyama, et al., Mater. Sci. Eng. A, 486, No. 1–2, 228–234 (2008).

    Article  Google Scholar 

  8. H. Y. Kim and S. Miyazaki, Mater. Trans., 56, No. 5, 625–634 (2015).

    Article  Google Scholar 

  9. R. Dong, H. Kou, L. Wu, et al., J. Mater. Sci., 56, 1685–1693 (2021).

    Article  ADS  Google Scholar 

  10. M. Niinomi, J. Mech. Behav. Biomed. Mater., 1, 30–42 (2008).

    Article  Google Scholar 

  11. T. Ozaki, H. Matsumoto, S. Watanabe, et al., Mater. Trans., 45, No. 8, 2776–2779 (2004).

    Article  Google Scholar 

  12. E. S. Marchenko, G. A. Baigonakova, and A. A. Klopotov, Izv. Vyssh. Uchebn. Zaved. Fiz., 57, No. 6/2, 68–74 (2014).

    Google Scholar 

  13. A. Panin, A. Dmitriev, A. Nikonov, et al., Metals, 12, 732-1–16 (2022).

  14. N. Skripnyak, A. V. Ponomareva, M. P. Belov, and I. Abrikosov, Mater. Des., 140, 357−365 (2018).

    Article  Google Scholar 

  15. A. Shugurov, A. Panin, M. Kazachenok, et al., Metals, 11, 1882-1–12 (2021).

  16. V. E. Egorushkin and S. E. Kulkova, J. Phys. F: Met. Phys., 12, 2823–2828 (1982).

    Article  ADS  Google Scholar 

  17. Ch. E. Lekka, J. J. Gutiérrez-Moreno, and M. Calin, J. Phys. Chem. Solids, 102, 49–61 (2017).

    Article  ADS  Google Scholar 

  18. P. E. Blöchl, Phys. Rev. B, 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  19. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  21. R. M. Wood, Proc. Phys. Soc., 80, 783–786 (1962).

    Article  ADS  Google Scholar 

  22. O. N. Senkov, B. C. Chakoumakos, J. J. Jonas, et al., Mater. Res. Bull., 36, 1431–1440 (2001).

    Article  Google Scholar 

  23. O. B. Perevalova and A. V. Panin, Fiz. Khim. Obrab. Met., 6, 50–62 (2017).

    Google Scholar 

  24. B. Thaddeus, Binary Alloys Phase Diagrams, V. 2, American Society for Metals, Metals Park, Ohio (1987).

    Google Scholar 

  25. R. P. Kolli, W. J. Joost, and S. Ankem, JOM, 67, 1273–1280 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Kasparyan.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 42–48, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasparyan, S.O., Bakulin, A.V. & Kulkova, S.E. Effect of V, Nb, and Mo Impurities on the Stability of Titanium Phases. Russ Phys J 65, 1283–1289 (2022). https://doi.org/10.1007/s11182-023-02763-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02763-0

Keywords

Navigation