Skip to main content
Log in

Isotope Effect in Sootflake Synthesis in Low-Temperature Plasma and Weak Magnetic Field

  • Published:
Russian Physics Journal Aims and scope

The paper shows that the dynamics of spin pairs observed in a constant weak magnetic field on the microparticle surface of condensed phase in the heterogeneous plasma or on the solid surface, is similar to the dynamics of radical pairs in a liquid. This is because a lengthy interaction between one of the surface atoms of the condensed phase and the atom adsorbed on this surface. Triplet to spin-singlet pair conversion provides the transition of the adsorbed atom to the condensed phase microparticle composition. For the 13C isotope, the probability of the adsorbed atom transition to the crystal lattice of the condensed phase in the geomagnetic field, is 5 orders of magnitude higher than for the 12C/12C isotope pair, whereas in 0.2 T field, this probability is higher by 80 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-S. Choi, T. G. Shikova, V. A. Titov, and V. V. Rybkin, J. Colloid. Interface Sci., 300, No. 2, 640–647 (2006). https://doi.org/10.1016/J.JCIS.2006.04.001.

    Article  ADS  Google Scholar 

  2. Vitezslav Stranak, Harm Wulff, Petra Ksirova, et al., Thin Solid Films, 550, 389–394 (2014). https://doi.org/10.1016/j.tsf.2013.11.001.

    Article  ADS  Google Scholar 

  3. I. V. Shamanin, A. G. Karengin, I. Yu. Novoselov, et al., J. Phys.: Conf. Ser., 1145, Article 012057, 1–7 (2019).

  4. A. A. Saifutdinova, A. O. Sofronitskii, B. A. Timerkaev, and A. I. Saifutdinov, Russ. Phys. J., 62, No. 11, 2132–2136 (2020). https://doi.org/10.17223/00213411/62/11/161.

    Article  Google Scholar 

  5. A. A. Lyakhov and V. I. Strunin, Vestn. Tom. gos. un-ta. Matematika i mekhanika, No. 50, 79–89 (2017).

  6. A. L. Buchachenko, Yu. N. Molin, R. Z. Sagdeev, et al., Soviet Physics Uspekhi, 151, No. 1, 173–174 (1987).

    Google Scholar 

  7. J. Nicholas Turro, Proc. Natl. Acad. Sci. USA, 80, 609–621 (1983). https://doi.org/10.1073/pnas.80.2.609.

    Article  Google Scholar 

  8. Daryl G. Clerc, Hassel Ledbetter, Comput. Condens. Matter, 11, 11–19 (2017). https://doi.org/10.1016/j.cocom.2017.03.003.

    Article  Google Scholar 

  9. J. Serrano, R. K. Kremer, M. Cardona, et al., Phys. Rev. B, 73, 094303 (2006). https://doi.org/10.1103/PhysRevB.73.094303.

    Article  ADS  Google Scholar 

  10. N. Garro, A. Cantarero, M. Cardona, et al., Phys. Rev. B, 54, No. 7, 4732–4740 (1996). https://doi.org/10.1103/PhysRevB.54.4732.

    Article  ADS  Google Scholar 

  11. V. F. Myshkin, E. V. Bespala, V. A. Khan, et al., IOP Conf. Ser.: Mater. Sci. Eng., 012029 (2016). https://doi.org/10.1088/1757-899X/135/1/012029.

  12. S. K. Myasnikov, A. Yu. Tikhonov, and N. N. Kulov, Theor. Found. Chem. En., 54, No. 2, 249–257 (2020). https://doi.org/10.31857/S0040357120020116.

    Article  Google Scholar 

  13. S. P. Fisenko, Tech. Phys., 58, No. 5, 658–663 (2013).

    Article  Google Scholar 

  14. V. F. Myshkin, M. Tichy, V. A. Khan, V. N. Lenskii, D. L. Gamov, E. V. Bespala, Russ. Phys. J., 60, No. 7, 1099–1108 (2017).

    Article  Google Scholar 

  15. M. Dion, H. Rydberg, E. Schröder, et al., Phys. Rev. Lett., 92, 246401 (2004).

    Article  ADS  Google Scholar 

  16. A. I. Slutsker, A. I. Mikhailin, and I. A. Slutsker, Phys. Usp., 37, No. 4, 335–344 (1994). https://doi.org/10.3367/UFNr.0164.199404e.0357.

    Article  ADS  Google Scholar 

  17. Świderek Katarzyna, Paneth Piotr, Chem. Rev., 113, No. 10, 7851–7879 (2013). https://doi.org/10.1021/cr300515x.

    Article  Google Scholar 

  18. V. F. Myshkin, V. A. Vlasov, D. A. Izhoykin, et al., in: Proc. 7th International Forum on Strategic Technology, 6357770 (2012).

  19. G. M. Arnold, Carbon, 5, No. 1, 33−42 (1967).

    Article  Google Scholar 

  20. H. J. Bardelebe von, J. L. Cantin, A. Zeinert, et al., Appl. Phys. Lett., 78, No. 19, 2843–2845 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Myshkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 14–19, April, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myshkin, V.F., Khan, V.A., Tikhi, M. et al. Isotope Effect in Sootflake Synthesis in Low-Temperature Plasma and Weak Magnetic Field. Russ Phys J 65, 598–604 (2022). https://doi.org/10.1007/s11182-022-02674-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02674-6

Keywords

Navigation