Skip to main content
Log in

Residual Stress Analysis in High Temperature Multilayer Ceramics

  • Published:
Russian Physics Journal Aims and scope

Based on the analytical solution, the paper focuses on the residual stress distribution in disklike composite specimens comprising ceramic layers of different composition during the cooling process after sintering to room temperature. It is shown that varying the layer thickness, it is possible to control the maximum stress distribution. With regard to diffusion zones at the interface between the neighboring layers with different thermal expansion coefficient, it is possible to reduce these dangerous stresses proportionally to the thickness of these zones. Note that for the engineering solution, it advisable to utilize the physical-and-mechanical parameters of composite components for high temperature, rather than for the average temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Fahrenholtz, G. E Hilmas, I. G. Talmy, et al., J. Am. Ceram. Soc., 90, No. 5, 1347–1364 (2007). DOI: https://doi.org/10.1111/j.1551-2916.2007.01583.x

    Article  Google Scholar 

  2. B. R., Golla A. Mukhopadhyay, B. Basu, et al., Prog. Mater. Sci., 111, 100651 (2020). DOI: 10.1016/j.pmatsci. 2020.100651.

  3. Yu. A. Mirovoy, A. G. Burlachenko, and S. P. Buyakova, Russ. Phys. J., 63, 5, 752–758 (2020). DOI: https://doi.org/10.1007/s11182-020-02094-4.

    Article  Google Scholar 

  4. P. Parente, Y. Ortega, B. Savoini, et al., Acta Mater., 58, 3014–3021 (2010). DOI: https://doi.org/10.1016/j.actamat.2010.01.033.

    Article  ADS  Google Scholar 

  5. G. De Portu, L., Micele Y. Sekiguchi, et al., Acta Mater., 53, 1511–1520 (2005). DOI: https://doi.org/10.1016/j.actamat.2004.12.003.

  6. A. G. Burlachenko, Y. A. Mirovoy, E. S. Dedova, and S. P. Buyakova, Russ. Phys. J., 62, No. 8, 1438–1444 (2019). DOI: https://doi.org/10.1007/s11182-019-01861-2.

    Article  Google Scholar 

  7. A. I. Akimov, I. A. Akimov, and D. I. Sidelov, Nauch.-Tekh. Vestn. Povolzh'ya, No. 6, 88–91 (2019).

  8. V. A. Kudinov, A. E. Kuznetsova, A. V. Eremin, et al., Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki, 30, No. 1, 215–221 (2013).

  9. Y. Wen and C. Basaran, Mech. Mater., 36, 369–385 (2004). DOI: https://doi.org/10.1016/S0167-6636(03)00076-0.

    Article  Google Scholar 

  10. V. N. Demidov and A. G. Knyazeva, Appl. Mech. Mater., 756, 540–545 (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.756.540.

    Article  Google Scholar 

  11. D. A. Bondarchuk, B. N. Fedulov, A. N. Fedorenko, et al., PNRPU Mech. Bull., No. 3, 17–26 (2019). DOI: https://doi.org/10.15593/perm.mech/2019.3.02

  12. G. Zhang, Q., Guo K. Wang, et al., Mater. Sci. Eng. A, 488, 45–49 (2008). DOI: https://doi.org/10.1016/j.msea.2007.10.078.

  13. R. R. Balokhonov, A. S. Kulkov, A. V. Zemlyanov, et al., Phys. Mesomech., 24, 503–512 (2021). DOI: https://doi.org/10.1134/S1029959921050015.

    Article  Google Scholar 

  14. Y. Yang, “Temperature-dependent thermoelastic analysis of multidimensional functionally graded materials,” Doctor’s Dissertation, University of Pittsburgh, Pittsburgh (2015).

    Google Scholar 

  15. V. V. Skripnyak and V. A. Skripnyak, Lett. Mater., 7, No. 4, 407–411 (2017). DOI: https://doi.org/10.22226/2410-3535-2017-4-407-411.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zimina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 146–153, March, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimina, V.A., Smolin, I.Y. Residual Stress Analysis in High Temperature Multilayer Ceramics. Russ Phys J 65, 551–559 (2022). https://doi.org/10.1007/s11182-022-02667-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02667-5

Keywords

Navigation