Skip to main content
Log in

Mechanical Response of ZrB2–SiC–ZrO2 Composite Laminate

  • Published:
Russian Physics Journal Aims and scope

The paper deals with heat-reflecting ZrB2–20% SiC ceramic composite and heat-reflecting ZrB2–20% SiC composite laminate with ZrO2 addition, the amount of which varies from 0 to 100%. Their properties and behavior are studied under the conditions of three-point bending and diametral compressive tests. The increased amount of ZrO2 in the composite layers notably reduces the elastic modulus and increases the thermal-expansion coefficient. It is found that in the composite laminate layer adjacent to that with lower thermal-expansion coefficient and in the layer adjacent to that with higher thermal-expansion coefficient, compressive and tensile residual stresses appear, respectively. The hardness in the region of compressive stress is higher than in the region of tensile stress. The texture of the broken specimen surface indicates that the main crack bifurcation occurs at the interface of the layers with 30 and 70% ZrO2 content and the greater difference in the thermal-expansion coefficient, regardless of the loading conditions of three-point bending. The fracture energy of ZrB2–SiC–ZrO2 composite laminate significantly exceeds that of ZrB2–20% SiC ceramic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Parente, Y. Ortega, et al., Acta Mater., 58, 3014–3021 (2010).

    Article  Google Scholar 

  2. M. P. Rao, A. J. Sanchez-Herencia, G. E. Beltz, et al., Science, 286, 102–105 (1999).

    Article  Google Scholar 

  3. J. Gurauskis, A. J. Sanchez-Herencia, and C. J. Baudin, J. Eur. Ceram. Soc., 27, 1389–1394 (2007).

    Article  Google Scholar 

  4. G. Y. Lin and A. V. Virkar, J. Am. Ceram. Soc., 84, 1321–1326 (2001).

    Article  Google Scholar 

  5. D. Kovar, M. D. Thouless, and J. W. Halloran, J. Am. Ceram. Soc., 81, No. 4, 1004–1012 (1998).

    Article  Google Scholar 

  6. R. Bermejo, C. Baudın, R. Moreno, et al., Compos. Sci. Technol., 67, No. 9, 1930–1938 (2007).

    Article  Google Scholar 

  7. D. D. Hass, A. J. Slifka, and H. N. G. Wadley, Acta Mater., 49, 973–983 (2001).

    Article  Google Scholar 

  8. A. G. Evans, J. Am. Ceram. Soc., 73, No. 2, 187–206 (1990).

    Article  Google Scholar 

  9. O. A. Kudryavtsev and S. B. Sapozhnikov, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 6, No. 3, 60–65 (2014).

    Google Scholar 

  10. M. G. Pontin, M. P. Rao, A. J. Sanchez-Herencia, and F. F. Lange, J. Am. Ceram. Soc., 85, 3041–3048 (2002).

    Article  Google Scholar 

  11. M. H. Zhao, X. Chen, J. Yan, and A. M. Karlsson, Acta Mater., 54, 2823–2832 (2006).

    Article  Google Scholar 

  12. S. Suresh and A. E. Giannakopoulos, Acta Mater., 46, 5755–5767 (1998).

    Article  Google Scholar 

  13. Y. H. Lee and D. Kwon, Scripta Mater., 49, 459–465 (2003).

    Article  Google Scholar 

  14. T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Sci., 11, 752–759 (1996).

    Google Scholar 

  15. A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res., 11, 760–768 (1996).

    Google Scholar 

  16. G. D. Quinn and R. C. Bradt, J. Am. Ceram. Soc., 90, 673–680 (2007).

    Article  Google Scholar 

  17. X. Zhao and P. Xiao, Surf. Coat. Tech., 201, 1124–1131 (2006).

    Article  Google Scholar 

  18. G. de Portu, L. Micele, Y. Sekiguchi, and G. Pezzotti, Acta Mater., 53, 1511–1520 (2005).

    Article  Google Scholar 

  19. A. V. Diniz, N. G. Ferreira, E. J. Corat, and V. J. Trava-Airoldi, Diam. Relat. Mater., 13. 526–532 (2004).

    Article  ADS  Google Scholar 

  20. M. Tanaka, R. Kitazawa, T. Tomimatsu, et al., Surf. Coat Tech., 204, 657–660 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Burlachenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 121–127, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlachenko, A.G., Mirovoi, Y.A., Dedova, E.S. et al. Mechanical Response of ZrB2–SiC–ZrO2 Composite Laminate. Russ Phys J 62, 1438–1444 (2019). https://doi.org/10.1007/s11182-019-01861-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01861-2

Keywords

Navigation