Skip to main content
Log in

Optical Coherence Tomography of Young’s Modulus Variations in Lymphedematous Tissue Model

  • Published:
Russian Physics Journal Aims and scope

The paper presents the optical coherence tomography investigations of tissue swelling caused by acute and chronic inflammations including lymphedema. Since lymphedema is characterized by a higher content of proteins in the intercellular fluid, the lymphedematous tissue model is based on the different fluid content in the muscular tissue. It is shown that Young’s modulus of the tissue sample reduces monotonically with increasing intercellular protein fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Lee, J. Bergan, and S. G. Rockson, Lymphedema, Springer Verlag, London (2011).

    Book  Google Scholar 

  2. A. G. Warren, H. Brorson, L. J. Borud, and S. A. Slavin, Ann. Plast. Surg., 59, No. 4, 464−472 (2007).

    Article  Google Scholar 

  3. O. Kayıran, C. La Cruz de, K. Tane, and A. Soran, Turk. J. Surg., 33, No. 2, 51−57 (2017).

  4. L. L. Tretbar, C. L. Morgan, B. Lee, et al., Lymphedema. Diagnosis and Treatment, Springer Verlag, London (2008).

  5. C. Anjali, R. P. Raghuram, Yu C. Sung, et al., Curr. Breast Cancer Rep., 11, No. 1, 365−372 (2019).

    Google Scholar 

  6. D. V. Melnikov, O. I. Startseva, D. K. Prudnikova, et al., Ann. Plast. Surg., 13, No. 1, 38−50 (2018).

    Google Scholar 

  7. T. F. O'Donnell, J. C. Rasmussen, and E. M. Sevick-Muraca, J. Vasc. Surg. Venous Lymphatic Disord., 5, No. 2, 261−273 (2017).

    Article  Google Scholar 

  8. N. Unno, M. Nishiyama, M. Suzuki, et al., EJVES, 36, No. 2, 230−236 (2008).

    Google Scholar 

  9. I. Stoffels, D. Joachim, and T. Pöppel, JAMA Surgery, 150, No. 7, 617−623 (2015).

    Article  Google Scholar 

  10. Oğuz Kayıran, Carolyn De La Cruz, Kaori Tane, and Atilla Soran, Turk. J. Surg., 33, No. 2, 51−57 (2017).

    Article  Google Scholar 

  11. H. Li, D. E. Furst, H. Jin, et al., Arthritis Res. Ther., 20, No. 181, 1−8 (2018).

    Google Scholar 

  12. L. C. Ward, Lymphat. Res. Biol., 4, No. 1, 51−56 (2006).

    Article  Google Scholar 

  13. W. J. Rutherford, ICHPER-SD Journal of Research, 6, No. 2, 56−60 (2011).

    Google Scholar 

  14. V. V. Nikolaev, D. A. Vrazhnov, E. A Sandykova, et al., J. Phys. Conf. Ser., 1145, No. 012043, 1−7 (2019).

    Google Scholar 

  15. Y. V. Kistenev, V. V. Nikolaev, O. S. Kurochkina, et al., Biomed. Opt. Express, 10, No. 7, 3353−3368 (2019).

    Article  Google Scholar 

  16. C. Sun, B. Standish, and V. Yang, J. Biomed. Opt., 16, No. 4, 043001 (2011).

    Article  ADS  Google Scholar 

  17. A. A. Lokhin, Y. V. Kistenev, A. V. Borisov, et al., Proc. SPIE, 11208, 112080C-1–112080C-6 (2019).

    Google Scholar 

  18. M. A. Kirby, K. Zhou, J. J. Pitre, et al., J. Biomed. Opt., 24, No. 9, 096006-1–096006-16 (2019).

    Article  Google Scholar 

  19. J. Li, C. H Liu, A. Schill, et al., Proc. SPIE, 97101, 97101A-1–97101A-6 (2016).

    Google Scholar 

  20. S. Wang and K. V. Larin, J. Biophotonics, 8, No. 4, 279−302 (2015).

    Article  Google Scholar 

  21. V. Y. Zaitsev, A. L. Matveev, L. A. Matveev, et al., J. Innov. Opt. Health Sci., 10, No. 6, 1742006-1–1742006-13 (2017).

    Article  Google Scholar 

  22. T. Krouskop, T. Wheeler, F. Kallel, et al., Ultrason. Imaging, 20, No. 4, 260−274 (1998).

    Article  Google Scholar 

  23. B. F. Kennedy, K. M. Kennedy, L. Chin, et al., J. Biomed. Opt., 5, No. 9, 3090−3102 (2014).

    Article  Google Scholar 

  24. L. Chin, A. Curatolo, F. Kennedy, et al., Biomed. Opt. Express, 5, No. 9, 2913−2930 (2014).

    Article  Google Scholar 

  25. K. M. Kennedy, C. Ford, B. F. Kennedy, et al., J. Biomed. Opt., 18, No. 12, 121508-1–121508-9 (2013).

    ADS  Google Scholar 

  26. J. Li, S. Wang, R. K. Manapuram, et al., J. Biomed. Opt., 18, No. 4, 121503-1–121503-6 (2013).

    Article  ADS  Google Scholar 

  27. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, et al., Laser Phys. Lett., 16, No. 6, 065601−065606 (2019).

    Article  ADS  Google Scholar 

  28. Li En, M. Shuichi, A. Shinnosuke, A. Miyazawa, et al., Opt. Lett., 44, No. 4, 787−790 (2019).

    Article  ADS  Google Scholar 

  29. C. Sun, B. A. Standish, and V. X. D. Yang, J. Biomed. Opt., 16, No. 4, 043001-1–043001-13 (2011).

    Article  ADS  Google Scholar 

  30. Y. Q. Qu, IOVS, 59, No. 1, 455−461 (2018).

    Google Scholar 

  31. E. V. Gubarkova, A. A. Sovetsky, V. Y. Zaitsev, et al., Biomed. Opt. Express, 10, No. 5, 2244−2263 (2019).

    Article  Google Scholar 

  32. M. Shinohara, K. Sabra, L. Gennisson, et al., Muscle Nerve, 42, 438−441 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lokhin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 139–144, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhin, A.A., Kistenev, Y.V., Zakharova, O.A. et al. Optical Coherence Tomography of Young’s Modulus Variations in Lymphedematous Tissue Model. Russ Phys J 64, 2135–2140 (2022). https://doi.org/10.1007/s11182-022-02571-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02571-y

Keywords

Navigation