Skip to main content
Log in

A novel approach to analyze the rheological properties of hydrogels with network structure simulation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Rheological properties of hydrogel materials are highly related to the molecular structure of polymeric randomly crosslinked or supramolecular gel networks. The numerical simulation in this paper is focusing on a static picture of the network percolation and defects at a larger scale. In order to predict G (the storage modulus in shear) properly, it is important to obtaining an accurate value of the effective number of network points per unit volume n. A 3D computer model, which includes ten thousand to several hundred thousand polymer chains, has been developed to study the network of the polymer structure; especially to focus on quantitative analysis of network percolation threshold and local defects. The algorithm has successfully found network percolation and identified different types of network defects as expected. Values of shear modulus are estimated from simulation results and compared with rheological measurement and theoretical calculation, which serve as a guidance to better understand the links between shear modulus and rheological percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. While a crosslinked system is clearly a solid, a supramolecularly crosslinked system can be both solid- or liquid-like. Furthermore, for soft materials a rheometer, classically used for liquids and polymer melts works significantly better than a standard universal mechanical testing machines, as the forces encountered are much lower.

References

  1. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  2. Zhu W, Li YL, Liu LX, Chen YM, Wang C, Xi F (2010) Supramolecular Hydrogels from Cisplatin-Loaded Block Copolymer Nanoparticles and alpha-Cyclodextrins with a Stepwise Delivery Property. Biomacromolecules 11:3086–3092

    Article  CAS  Google Scholar 

  3. GhavamiNejad A, Sasikala ARK, Unnithan AR, Thomas RG, Jeong YY, Vatankhah-Varnoosfaderani M, Stadler FJ, Park CH, Kim CS (2015) Mussel-Inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy. Adv Funct Mater 25:2867–2875

    Article  CAS  Google Scholar 

  4. Kumar GG, Hashmi S, Karthikeyan C, GhavamiNejad A, Vatankhah-Varnoosfaderani M, Stadler FJ (2014) Graphene Oxide/Carbon Nanotube Composite Hydrogels-Versatile Materials for Microbial Fuel Cell Applications. Macromol Rapid Commun 35:1861–1865

    CAS  Google Scholar 

  5. GhavamiNejad A, Hashmi S, Joh HI, Lee S, Lee YS, Vatankhah-Varnoosfaderani M, Stadler FJ (2014) Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments. Phys Chem Chem Phys 16:8675–8685

    Article  CAS  Google Scholar 

  6. Goldansaz H, Goharpey F, Afshar-Taromi F, Kim I, Stadler FJ, van Ruymbeke E, Karimkhani V (2015) Anomalous Rheological Behavior of Dendritic Nanoparticle/Linear Polymer Nanocomposites. Macromolecules 48:3368–3375

    Article  CAS  Google Scholar 

  7. Hashmi S, GhavamiNejad A, Stadler FJ, Wu DM (2015) Oscillations in modulus in solutions of graphene oxide and reduced graphene oxide with grafted poly-N-isopropylamide. Soft Matter 11:1315–1325

    Article  CAS  Google Scholar 

  8. Vatankhah-Varnoosfaderani M, GhavamiNejad A, Hashmi S, Stadler FJ (2015) Hydrogen Bonding in Aprotic Solvents, a New Strategy for Gelation of Bioinspired Catecholic Copolymers with N-Isopropylamide. Macromol Rapid Commun 36:447–452

    Article  CAS  Google Scholar 

  9. Guillet P, Mugemana C, Stadler FJ, Schubert US, Fustin C-A, Bailly C, Gohy J-F (2009) Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials. Soft Matter 5:3409–3411

    Article  CAS  Google Scholar 

  10. Zeng F, Han Y, Yan ZC, Liu CY, Chen CF (2013) Supramolecular polymer gel with multi stimuli responsive, self-healing and erasable properties generated by host-guest interactions. Polymer 54:6929–6935

    Article  CAS  Google Scholar 

  11. Brassinne J, Gohy JF, Fustin CA (2014) Controlling the Cross-Linking Density of Supramolecular Hydrogels Formed by Heterotelechelic Associating Copolymers. Macromolecules 47:4514–4524

    Article  CAS  Google Scholar 

  12. Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41:909–930

    Article  CAS  Google Scholar 

  13. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  14. Zhou HX, Woo J, Cok AM, Wang MZ, Olsen BD, Johnson JA (2012) Counting primary loops in polymer gels. Proc Natl Acad Sci USA 109:19119–19124

    Article  CAS  Google Scholar 

  15. Chiper M, Hoeppener S, Schubert US, Fustin CA, Gohy JF (2010) Self-Assembly Behavior of Bis(terpyridine) and Metallo-bis(terpyridine) Pluronics in Dilute Aqueous Solutions. Macromol Chem Phys 211:2323–2330

    Article  CAS  Google Scholar 

  16. Ahmadi M, Hawke LGD, Goldansaz H, van Ruymbeke E (2015) Dynamics of Entangled Linear Supramolecular Chains with Sticky Side Groups: Influence of Hindered Fluctuations. Macromolecules 48:7300–7310

    Article  CAS  Google Scholar 

  17. Kawamoto K, Zhong MJ, Wang R, Olsen BD, Johnson JA (2015) Loops versus Branch Functionality in Model Click Hydrogels. Macromolecules 48:8980–8988

    Article  CAS  Google Scholar 

  18. Norisuye T, Takeda M, Shibayama M (1998) Cluster-size distribution of cross-linked polymer chains across the gelation threshold. Macromolecules 31:5316–5322

    Article  CAS  Google Scholar 

  19. Zhou HX, Schon EM, Wang MZ, Glassman MJ, Liu J, Zhong MJ, Diaz DD, Olsen BD, Johnson JA (2014) Crossover Experiments Applied to Network Formation Reactions: Improved Strategies for Counting Elastically Inactive Molecular Defects in PEG Gels and Hyperbranched Polymers. J Am Chem Soc 136:9464–9470

    Article  CAS  Google Scholar 

  20. Wang R, Alexander-Katz A, Johnson JA, Olsen BD (2016) Universal Cyclic Topology in Polymer Networks. Phys Rev Lett 116:188302

    Article  Google Scholar 

  21. Zhong M, Wang R, Kawamoto K, Olsen BD, Johnson JA (2016) Quantifying the impact of molecular defects on polymer network elasticity. Science 353:1264–1268

    Article  CAS  Google Scholar 

  22. Vatankhah-Varnoosfaderani M, Ghavaminejad A, Hashmi S, Stadler FJ (2013) Mussel-inspired pH-triggered reversible foamed multi-responsive gel--the surprising effect of water. Chem Commun 49:4685–4687

    Article  CAS  Google Scholar 

  23. Olsen BD, Johnson JA (2013) Reply to Stadler: Combining network disassembly spectrometry with rheology/spectroscopy. PNAS 110:E1973

    Article  CAS  Google Scholar 

  24. Stadler FJ (2013) Quantifying primary loops in polymer gels by linear viscoelasticity. Proc Natl Acad Sci U S A 110:E1972

    Article  CAS  Google Scholar 

  25. Ferry JD (1980) Viscoelastic Properties of Polymers. John Wiley and Sons, New York,

    Google Scholar 

  26. F.J. Stadler, T. Takahashi, K. Yonetake, Lattice sizes, crystallinities, and spacing between amorphous chains - characterization of ethene−/ɑ-olefin copolymers with various comonomers and comonomer contents measured by wide angle X-ray scattering, e-Polymers, 9 (2009)

  27. Vatankhah-Varnoosfaderani M, Hashmi S, GhavamiNejad A, Stadler FJ (2014) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron-catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5:512–523

    Article  CAS  Google Scholar 

  28. GhavamiNejad A, Hashmi S, Vatankhah-Varnoosfaderani M, Stadler FJ (2016) Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels. Rheol Acta 55:163–176

    Article  CAS  Google Scholar 

  29. Fetters LJ, Lohse DJ, Colby RH (2007) Chain Dimensions and Entanglement Spacings. In: Mark JE (ed) Physical Properties of Polymers, 2nd edn. Springer, Heidelberg,

    Google Scholar 

Download references

Acknowledgements

FJS would like to thank the National Science Foundation of China (21574086), Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), Shenzhen Sci & Tech research grant (ZDSYS201507141105130), and Shenzhen City Science and Technology Plan Project (JCYJ20140509172719311) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Electronic supplementary material

ESM 1

(GIF 902 kb)

ESM 2

(GIF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Du, B. & Stadler, F.J. A novel approach to analyze the rheological properties of hydrogels with network structure simulation. J Polym Res 25, 4 (2018). https://doi.org/10.1007/s10965-017-1352-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1352-y

Keywords

Navigation