Skip to main content
Log in

Effect of Laser and Temperature Treatment on the Optical Properties of Titanium Dioxide Nanoparticles Prepared Via Pulsed Laser Ablation

  • Published:
Russian Physics Journal Aims and scope

Nanomaterials based on titanium dioxide are of considerable interest as promising photocatalysts for water and air purification and hydrogen generation. To increase the efficiency of TiO2, it is necessary to extend the spectral range of its absorption to the visible region. In this work, nanocolloids of dark titanium dioxide, initially prepared by pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns) in water, are subjected to an additional laser treatment from the same source. Colloidal solutions are dried and TiO2 powders are annealed. A comparative analysis of the optical properties of the materials prepared with and without extra treatment by the methods of diffuse reflection spectroscopy, fluorescence, and Raman spectroscopy is carried out. The bandgap of the materials is estimated, and the nature of the defect states responsible for intense absorption in the visible region of the spectrum is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Asahi, T. Morikawa, H. Irie, et al., Chem. Rev., 114, 9824 (2014).

    Article  Google Scholar 

  2. M. Dahl, Y. D. Liu, and Y. D. Yin, Chem. Rev., 114, 9853 (2013).

    Article  Google Scholar 

  3. A. Y. Meng, J. Zhang, D. F. Xu, et al. Appl. Catal. B-Environ., 198, 286 (2016).

    Article  Google Scholar 

  4. X. Zhang, H. Tian, X. Wang, et al., Mater. Lett., 100, 51 (2013).

    Article  Google Scholar 

  5. M. Xing, W. Fang, M. Nasir, et al., J. Catal., 297, 236 (2013).

    Article  Google Scholar 

  6. S. G. Ullattil, S. B. Narendranath, S. C. Pillai, et al., Chem. Eng. J., 343, 708 (2018).

    Article  Google Scholar 

  7. B. Wang, S. Shen and S. S. Mao, J. Materiomics., 3, No. 2, 96 (2017).

    Article  Google Scholar 

  8. X. Chen, L. Liu, F. Huang, Chem. Soc. Rev., 44, No. 7, 1861 (2015).

    Article  Google Scholar 

  9. L. S. Kibis, A. I. Stadnichenko, D. A. Svintsitskiy, et al., Catal. Sci. Technol., 11, No. 1, 250 (2021).

    Google Scholar 

  10. E. D. Fakhrutdinova, A. V. Shabalina, M. A. Gerasimova, et al., Materials, 13, No. 9, Art. No. 2054 (2020).

  11. N. Ali, Sh. Bashir, U. N. Begumg, et al., Appl. Surf. Sci., 405, 298 (2017).

    Article  ADS  Google Scholar 

  12. C. Yang, Y. Tian, L. Cui, et al., Radiat. Eff. Defects Solids, 170, No. 6, 528 (2015).

    Article  ADS  Google Scholar 

  13. M.-H. Tsaia, Sh.-Y. Chen, and P. Shen, Aerosol Science, 36, 13 (2005).

    Article  ADS  Google Scholar 

  14. V. A. Svetlichnyi, Y. A. Belik, A. A. Vodyankin, et al., Proc. SPIE., 11322, Art. No. 113221D (2019).

  15. M. Lau, Laser Fragmentation and Melting of Particles, Wiesbaden, Springer (2016).

    Book  Google Scholar 

  16. T. B. Hur, T. X. Phuoc, and M. K. Chyu, Opt. Lasers Eng., 47, 695 (2009).

    Article  Google Scholar 

  17. X. Chen, D. Zhao, K. Liu, et al., ACS Appl. Mater. Interfaces, 7, No. 29, 16070 (2015).

    Article  Google Scholar 

  18. J. F. Guayaquil-Sosa, B. Serrano-Rosales, P. J. Valadés-Pelayo, and H. de Lasa, Appl. Catal. B, 211, 337 (2017).

    Article  Google Scholar 

  19. D. Souri and Z. E. Tahan, Appl. Phys. B, 119, 273 (2015).

    Article  ADS  Google Scholar 

  20. C. H. Liang, Y. Shimizu, T. Sasaki, et al., Appl. Phys. A, 80, 819 (2005).

    Article  ADS  Google Scholar 

  21. A. Nath, S. S. Laha, and A. Khare, Integr. Ferroelectr., 121, 58 (2010).

    Article  Google Scholar 

  22. T. Sasaki and M. Watanabe, J. Phys. Chem. B, 101, No. 49, 10159 (1997).

    Article  Google Scholar 

  23. H. Ichinose, M. Terasaki, and H. Katsuki, J. Ceram. Soc. Jpn., 104, 715 (1996).

    Article  Google Scholar 

  24. H. Zhang and J. F. Banfield, J. Phys. Chem. B, 104, No. 15, 3481 (2000).

    Article  Google Scholar 

  25. X. Chen and S. S. Mao, Chem. Rev., 107, No. 7, 2891 (2007).

    Article  Google Scholar 

  26. B. Dong, T. Liu, C. Li, and F. Zhang, Chin. Chem. Lett., 29, 671 (2018).

    Article  Google Scholar 

  27. Y. Lei, L. D. Zhang, G. W. Meng, et al., Appl. Phys. Lett., 78, No. 8, 1125 (2001).

    Article  ADS  Google Scholar 

  28. S. Paul and A. Choudhury, Appl. Nanosci., 4, 839 (2014).

    Article  ADS  Google Scholar 

  29. J. Liu, J. Li, A. Sedhain, et al., J. Phys. Chem. C, 112, 17127 (2008).

    Article  Google Scholar 

  30. B. Choudhury, M. Dey, and A. Choudhury, Appl. Nanosci., 4, 499 (2014).

    Article  ADS  Google Scholar 

  31. H. Zhang, M. Zhou, Q. Fu, et al., Nanotechnology, 25, No. 27, Art. No. 275603 (2014).

  32. V. N. Kuznetsov and N. Serpone, J. Phys. Chem. C, 113, 15110 (2009).

    Article  Google Scholar 

  33. V. M. Khomenko, K. Langer, H. Rager, et al., Phys. Chem. Miner., 25, 338 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. P. Fedorovich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 120–127, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorovich, Z.P., Gerasimova, M.A., Fakhrutdinova, E.D. et al. Effect of Laser and Temperature Treatment on the Optical Properties of Titanium Dioxide Nanoparticles Prepared Via Pulsed Laser Ablation. Russ Phys J 64, 2115–2122 (2022). https://doi.org/10.1007/s11182-022-02564-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02564-x

Keywords

Navigation