Skip to main content
Log in

Photochromic Quantum Dots

  • Published:
Russian Physics Journal Aims and scope

Results of fundamental and applied research in the field of creating photochromic core-shell type nanoparticles in which semiconductor nanocrystals – quantum dots (QDs) – were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines, chromenes, and azo compounds) or thermally irreversible compounds (diarylethenes and fulgimides) have been analyzed. It has been shown that such nanoparticles provide a reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Razumov, Photonics of Colloid Quantum Dots [in Russian], Publishing House of Ivanovo State University, Ivanovo (2017).

  2. V. G. Reshma and P. V. Mohanan, J. Lumin., 205, 287−298 (2019); https://doi.org/10.1016/j.jlumin.2018.09.015.

    Article  Google Scholar 

  3. Z. Tian, W. Wu, and A. D. Q. Li, Chem. Phys. Chem., 10 (15), 2577−2591 (2009); https://doi.org/10.1002/cphc.200900492.

    Article  Google Scholar 

  4. V. A. Barachevsky, Org. Photonics. Photovolt., 3, 8−41 (2015); https://doi.org/10.1515/oph-2015-0003.

    Article  ADS  Google Scholar 

  5. L. Sansalone, S. Tang, Y. Zhang, et al., Top. Curr. Chem., 374 (5), 73 (2016); https://doi.org/10.1007/s41061-016-0073-8.

    Article  Google Scholar 

  6. H. Tian and J. Zhang, Photochromic Materials: Preparation, Properties and Applications, Wiley-VCH Verlag GmbH & Co., Weinheim (2016).

  7. I. L. Medintz, S. A. Trammell, H. Mattoussi, et al., J. Amer. Chem. Soc., 126 (1), 30−31 (2002); https://doi.org/10.1021/ja037970h.

    Article  Google Scholar 

  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic, New-York (1999).

  9. L. Zhu, M.-Q. Zhu, J. K. Hurst, et al., J. Am. Chem. Soc., 127 (25), 8968−8970 (2005); https://doi.org/10.1021/ja0423421.

    Article  Google Scholar 

  10. G. Lamri, A. Movsesyan, E. Figueiras, et al., Nanoscale, 11, 258−265 (2019); https://doi.org/10.1039/c8nr08076c.

    Article  Google Scholar 

  11. S. M. Emin, N. Sogoshi, S. Nakabayashi, et al., J. Phys. Chem. C, 113 (10), 3998−4007 (2009); https://doi.org/10.1021/jp809797.

    Article  Google Scholar 

  12. S. Soumya, V. N. Sheemol, P. Amba, et al., Sol. Energy Mater. Sol. Cells, 174, 554−565 (2018); https://doi.org/10.1016/j.solmat.2017.09.05.

    Article  Google Scholar 

  13. M. Saito, Y. Takahashi, K. Matsuda, et al., Proc. SPIE, 7142, 714208−714213 (2008); https://doi.org/10.1117/12.815272.

    Article  Google Scholar 

  14. M. Tomasulo, I. Yildlz, and F. M. Raymo, Austr. J. Chem., 59 (3), 175−178 (2006); https://doi.org/10.1071/ch05332.

    Article  Google Scholar 

  15. Z. Chen, L. Zhou, W. Bing, et al., J. Amer. Chem. Soc., 136 (20), 7498−7504 (2014); https://doi.org/10.1021/ja503123m.

    Article  Google Scholar 

  16. C. Liu, Y. Zhang, M. Liu, et al., Biomaterials, 139, 151−162 (2014); https://doi.org/10.1016/j.biomaterials.2017.06.008.

    Article  Google Scholar 

  17. E.-M. Lee, S.-Y. Gwon, Y.-A. Son, et al., Spectrochim. Acta A, 97, 806−810 (2012); https://doi.org/10.1016/j.saa.2012.07.074.

    Article  ADS  Google Scholar 

  18. V. Barachevsky, O. V. Venidiktova, T. M. Valova, et al., Photochem. Photobiol. Sci., 18, 2661−2665 (2019); https://doi.org/10.1039/c9pp00341j.

    Article  Google Scholar 

  19. S. Saeed, P. A. Channar, A. Saeed, et al., J. Photochem. Photobiol. A, 369 (2), 159−165 (2019); https://doi.org/10.1016/j.jphotochem.2018.09.035.

    Article  Google Scholar 

  20. W. Wu, L. Yao, T. Yang, et al., J. Am. Chem. Soc., 133 (40), 15810−15813 (2011); https://doi.org/10.1021/ja2043276.

    Article  Google Scholar 

  21. E. Jares-Erijman, L. Giordano, C. Spagnuolo, et al., Molec. Cryst. Liq. Cryst., 430 (1), 257−265 (2005); https://doi.org/10.1080/15421400590946479.

    Article  Google Scholar 

  22. Z. Erno, I. Yildiz, B. Gorodetsky, et al., Photochem. Photobiol. Sci., 9 (2), 249−253 (2010); https://doi.org/10.1039/b9pp00115h.

    Article  Google Scholar 

  23. S. A. Díaz, G. O. Menéndez, M. H. Etchehon, et al., ACS Nano, 5 (4), 2795−2805 (2011); https://doi.org/10.1021/nn103243c.

    Article  Google Scholar 

  24. S. A. Díaz, L. Giordano, T. M. Jovin, et al., Nano Lett., 12 (7), 3537−3544 (2012); https://doi.org/10.1021/nl301093s.

    Article  ADS  Google Scholar 

  25. S. A. Díaz, L. Giordano, J. C. Azcárate, et al., J. Am. Chem. Soc., 135 (8), 3208−3217 (2013); https://doi.org/10.1021/ja3117813.

    Article  Google Scholar 

  26. S. A. Díaz, F. Gillanders, E. A. Jares-Erijman, et al., Nat. Commun., 6 (1), 6036-1–11 (2015); https://doi.org/10.1038/ncomms7036.

  27. S. A. Díaz, F. Gillanders, K. Susumu, et al., Chem. Eur. J., 23 (2), 263−267 (2016); https://doi.org/10.1002/chem.201604688.

    Article  Google Scholar 

  28. L. Dworak, A. J. Reuss, M. Zastrow, et al., Nanoscale, 6 (23), 14200−14203 (2014); https://doi.org/10.1039/c4nr05144k.

    Article  ADS  Google Scholar 

  29. Y. Seto, R. Yamada, D. Kitagawa, et al., Chem. Lett., 48 (11), 1394−1397 (2019); https://doi.org/10.1246/cl.190634.

    Article  Google Scholar 

  30. N. Yano, M. Yamauchi, D. Kitagawa, et al., J. Phys. Chem. C, 124 (31), 17423−17429 (2020); https://doi.org/10.1021/acs.jpcc.0c05030.

    Article  Google Scholar 

  31. V. A. Barachevsky, O. I. Kobeleva, O. V. Venediktova, et al., Crystallogr. Rep., 64, No. 4, 820−824 (2019).

    ADS  Google Scholar 

  32. P. V. Karpach, A. A. Scherbovich, G. T. Vasilyuk, et al., J. Fluoresc., 29, 1311−1320 (2019); https://doi.org/10.1007/s10895-019-02455-4.

    Article  Google Scholar 

  33. A. A. Scherbovich, S. A. Maskevich, P. V. Karpach, et al., J. Phys. Chem. C, 124 (49), 27064−27070 (2020); https://doi.org/10.1021/acs.jpcc.0c06651.

    Article  Google Scholar 

  34. V. A. Barachevsky, Crystallogr. Rep., 63 (2), 293−297 (2019).

    Google Scholar 

  35. G. Jiang, Y. Jia, S. Cui, et al., Chem. Select., 5 (44), 13919−13924 (2020); https://doi.org/10.1002/slct.202002973.

    Article  Google Scholar 

  36. Y. Akaishi, A. D. Pramata, S. Tominaga, et al., Chem. Commun., 55, 8060−8063 (2019); https://doi.org/10.1039/c9cc03797g.

    Article  Google Scholar 

  37. K. Min Yeo, C. Ji Gao, K.-H. Ahn, et al., Chem. Commun., 38, 4622−4624 (2008); https://doi.org/10.1039/b807462c.

    Article  Google Scholar 

  38. C. Schedel, R. Thalwitzer, M. S. Khoshkhoo, et al., Z. Phys. Chem., 231 (1), 135−146 (2017); https://doi.org/10.1515/zpch-2016-0863.

    Article  Google Scholar 

  39. C. Schedel, H. Peisert, T. Chassé, et al., Z. Phys. Chem., 232 (9−11), 1369−1381 (2018); https://doi.org/10.1515/zpch-2018-1128.

    Article  Google Scholar 

  40. Z. Zhou, H. Hu, H. Yang, et al., Chem. Commun., 39 (39), 4786−4788 (2008); https://doi.org/10.1039/b809021a.

    Article  Google Scholar 

  41. C. Zhang, H.-P. Zhou, L.-Y. Liao, et al., Adv. Mater., 22 (5), 633−637 (2010); https://doi.org/10.1002/adma.200901722.

    Article  Google Scholar 

  42. J.-C. Boyer, C.-J. Carling, S. Y. Chua, et al., Chem. Eur. J., 18 (11), 3122−3126 (2012); https://doi.org/10.1002/chem.201103767.

    Article  Google Scholar 

  43. T. Wu, M. Barker, K. M. Arafeh, et al., Angew. Chem. Int. Ed., 52 (42), 11106−11109 (2013); https://doi.org/10.1002/anie.201305253.

    Article  Google Scholar 

  44. J.-C. Boyer, C.-J. Carling, B. D. Gates, et al., J. Am. Chem. Soc., 132 (44), 15766−1577 (2010); https://doi.org/10.1021/ja107184z

    Article  Google Scholar 

  45. C.-J. Carling, J.-C. Boyer, and N. R. Branda, J. Am. Chem. Soc., 131 (31), 10838−10839 (2009); https://doi.org/10.1021/ja904746s.

    Article  Google Scholar 

  46. C.-J. Carling, J.-C. Boyer, and N. R. Branda, Org. Biomol. Chem., 10 (30), 6159−6168 (2012); https://doi.org/10.1039/c2ob25368b.

    Article  Google Scholar 

  47. T. Wu, J.-C. Boyer, M. Barker, et al., Chem. Mater., 25 (12), 2495−2502 (2013); https://doi.org/10.1021/cm400802d.

    Article  Google Scholar 

  48. Y. Mi, H. Cheng, H. Chu, et al., Chem. Sci., 10, 10231–10239 (2019); https://doi.org/10.1039/c9sc03524a.

    Article  Google Scholar 

  49. T. Yang, Q. Liu, J. Li, et al., RSC Adv., 4, 15613−15619 (2014); https://doi.org/10.1039/c3ra47529h.

    Article  ADS  Google Scholar 

  50. X. Zhai, F. Shi, H. Chen, et al., J. Nanosci. Nanotechnol., 11, 9693−9696 (2011); https://doi.org/10.1166/jnn.2011.5260.

    Article  Google Scholar 

  51. K. Zheng, S. Han, X. Zeng, et al., Adv. Mater., 30 (30), 1801726-1−5, (2018); https://doi.org/10.1002/adma.201801726.

    Article  Google Scholar 

  52. S. Padgaonkar, C. T. Eckdahl, J. K. Sowa, et al., Nano Lett., 21, 854−860 (2021); https://doi.org/10.1021/acs.nanolett.0c04611.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Barachevsky.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 30–44, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barachevsky, V.A. Photochromic Quantum Dots. Russ Phys J 64, 2017–2034 (2022). https://doi.org/10.1007/s11182-022-02551-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02551-2

Keywords

Navigation