Skip to main content
Log in

Thermal Conductivity of Three-Dimensional Nanostructured Bi85sb15 Solid Solution

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The paper studies the thermal energy transfer in the there-dimensional nanostructured Bi85Sb15 solid solution. For this study, the Bi85Sb15 specimens are obtained from the powder grains with the size not over 2∙105, 950, 650, 380, 30 and 15 nm, and their thermal conductivity is investigated in the range of ~80−300 K. The Bi85Sb15 specimens are studied both before and after ~503 K vacuum annealing for 2 hours. The lattice and electronic thermal conductivities are determined herein. It is shown that at low temperatures, about 85% of the thermal conductivity is provided by the lattice vibrations, while at ~300 K, about 64% of it is provided by conduction electrons. At ~80 K, the electronic thermal conductivity grows, while the lattice thermal conductivity slightly drops due to the increase in the concentration of the charge carriers and more intensive phonon scattering at the grain boundaries. The obtained results are proven by measuring the electrical parameters of the Bi85Sb15 solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Zemskov, A. D. Belaya, and P. G. Borodin, Izv. AN SSSR. Neorgan. Materialy, 18, No. 7, 1154−1157 (1982).

    Google Scholar 

  2. V. M. Grabov, V. A. Komarov, and N. S. Kablukova, Phys. Solid State, 58, No. 3, 622–628 (2016).

    Article  ADS  Google Scholar 

  3. L. D. Ivanova, Semiconductors, 51, No. 7, 909–912 (2017).

    Article  ADS  Google Scholar 

  4. N. P. Stepanov, Russ. Phys. J., 47, No. 3, 262–272 (2004).

    Article  Google Scholar 

  5. M. G. Banaga, O. B. Sokolov, and L. D. Dudkin, Izv. AN SSSR. Neorgan. Materialy, 22, No. 4, 619−622 (1986).

    Google Scholar 

  6. M. M. Tagiyev, Z. F. Agaev, and D. Sh. Abdinov, Neorgan. Materialy, 30, No. 3, 375−378 (1994).

    Google Scholar 

  7. M. M. Tagiyev, Inorg. Mater., 57, No. 2, 113–118 (2021).

    Article  Google Scholar 

  8. M. M. Tagiyev, Russ. Phys. J., 60, No. 10, 1794–1797 (2018).

    Article  Google Scholar 

  9. M. M. Tagiyev, S. Z. Dzhafarova, A. M. Akhmedova, and G. D. Abdinova, Russ. Phys. J., 62, No. 3, 505–511 (2019).

    Article  Google Scholar 

  10. G. D. Abdinova, G. Z. Bagieva, and M. M. Tagiev, Inorg. Materialy, 44, No. 4, 406–408 (2008).

    Article  Google Scholar 

  11. N. A. Sidorenko and Z. M. Dashevskii, Semiconductors, 53, No. 5, 686–690 (2019).

    Article  ADS  Google Scholar 

  12. V. S. Zemskov, A. D. Belaya, U. S. Beluy, and G. N. Kozhemyakin, J. Cryst. Crowth., 212, No. 1, 161−166 (2000).

    Article  ADS  Google Scholar 

  13. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, et al., Inorg. Materialy, 44, No. 7, 789−793 (2008).

    Google Scholar 

  14. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, et al., Inorg. Materialy, 45, No. 2, 123–128 (2009).

    Article  Google Scholar 

  15. H. Wu, Z. Shan, J. Fan, et al., Mater. Sci. Technol., 37, No. 3, 269−279 (2021).

    Article  Google Scholar 

  16. L. P. Bulat, I. A. Drabkin, V. V. Karataev, et al., Phys. Solid State, 52, No. 9, 1836–1841 (2010).

    Article  ADS  Google Scholar 

  17. L. P. Bulat, L. V. Bochkov, I. A. Nefedova, and R. Akhyska, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, No. 4(92), 48−56 (2014).

  18. A. F. Ioffe, Semiconductor Thermocouples [in Russian], Moscow, Leningrad (1960).

  19. B. Sh. Barkhalov, G. Z. Bagiyeva, G. D. Abdinova, et al., Russ. Phys. J., 62, No. 4, 664–672 (2019).

    Article  Google Scholar 

  20. M. S. Dresselhaus, G. Chen, M. Y. Tang, et al., Adv. Mater., 19, 1043−1053 (2007).

    Article  Google Scholar 

  21. T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, J. Electron Materialy, 297, L 1−4, 12 (2000).

  22. L. P. Bulat, V. B. Osvencky, G. I. Pivovarov, et al., in: Proc. VI European Conf. on Thermoelectrics, (2008), pp. 12−14.

  23. A. Mzerd, B. Aboulfarah, A. Giani, et al., J. Mater. Sci., 41, No. 5, 1659 (2006).

    Article  ADS  Google Scholar 

  24. B. M. Gol'tsman, T. N. Ikonnikova, and V. A. Kutasov, Soviet Phys. Solid State, 27, No. 2, 542−545 (1985).

    Google Scholar 

  25. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  26. F. S. Samedov, M. M. Tagiyev, and D. Sh. Abdinov, Inorg. Materialy, 34, No. 7, 704–706 (1998).

    Google Scholar 

  27. D. M. Kheiker and L. S. Zevin, X-ray Diffractometry [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  28. A. K. Singh, ed., Advanced X-ray Techniques in Research and Industries, IOS Press, Amsterdam; Berlin; Oxford; Tokyo; Washington, DC (2005).

    Google Scholar 

  29. A. S. Okhotin, A. S. Pushkarskii, R. P. Borovikova, and V. A. Smirnov, Measurement Methods of Properties of Thermoelectric Materials and Transducers [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  30. V. S. Zemskov, P. G. Borodin, A. D. Belaya, and S. A. Roslov, Transfer Phenomena in Bismuth and Bismuth-Antimony Solid Solutions [in Russian], VINITI, Moscow (1978).

    Google Scholar 

  31. M. M. Tagiyev, Z. F. Agaev, and D. Sh. Abdinov, Neorgan. Materialy, 30, No. 6, 776−778 (1994).

    Google Scholar 

  32. Z. F. Agaev, G. D. Abdinova, G. Z. Bagieva, et al., Inorg. Materialy, 44, No. 2, 97–99 (2008).

    Article  Google Scholar 

  33. V. S. Oskotskii and I. A. Smirnov, Defects in Crystals and Thermal Conductivity [in Russian], Leningrad (1972).

  34. S. S. Ragimov, A. A. Saddinova, and A. I. Alieva, Russ. Phys. J., 62, No. 6, 1077–1081 (2019).

    Article  Google Scholar 

  35. P. S. Kireev, Semiconductor Physics [in Russian], Vysshaya shkola, Moscow (1975).

    Google Scholar 

  36. V. S. Zemskov and A. D. Belaya, Conditions of Single Crystal Growth from Melts Affecting Structure and Properties of Bismuth-Antimony-Based Solid Solutions [in Russian], VINITI, Moscow (1981).

    Google Scholar 

  37. O. Berger, Surf. Eng., 36, No. 3, 225−267 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Abdinova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 91–97, October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagiyev, M.M., Abdinova, G.D. & Abdullaeva, I.A. Thermal Conductivity of Three-Dimensional Nanostructured Bi85sb15 Solid Solution. Russ Phys J 64, 1886–1892 (2022). https://doi.org/10.1007/s11182-022-02537-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02537-0

Keywords

Navigation