Skip to main content
Log in

The Elastocaloric Effect in [001]-Single Crystals of Titanium Nickelide Containing Nanosized Ti3Ni4 Particles

  • Published:
Russian Physics Journal Aims and scope

The temperature dependence of the elastocaloric effect is studied and the experimental values of the adiabatic temperature change, ΔTad, in the loading/unloading cycles of up to 13.3 K and 16.4 K in quenched and aged Ni50.6Ti49.4 single crystals at 573 K, 1 h, respectively, are obtained. In aged crystals, a specific feature of the elastocaloric effect temperature dependence (an increase in ΔTad above the temperature TR = 273 K) is found, which is due to a change in the sequence of stress-induced martensitic transformation from RB19′ to B2–B19′. The factors (the dissipated energy in the working cycle and the strain hardening coefficient during the stress-induced martensitic transformation) affecting the elastocaloric effect are discussed. It is shown that the aged single crystals have a high coefficient of performance (COP of up to 31), which is promising for the solid-state cooling technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Qian et al., Int. J. Refrig., 64, 1 (2016).

    Article  Google Scholar 

  2. A. Chauhan, S. Patel, R. Vaish, and C. R. Bowen, MRS Energy & Sustainability, 2, E16 (2015).

    Article  Google Scholar 

  3. H. Sehitoglu, Y. Wu, and E. Ertekin, Scripta Mater., 148, 122 (2018).

    Article  Google Scholar 

  4. A. Kitanovski et al., Magnetocaloric Energy Conversion, Springer International Publishing, Switzerland (2015).

    Book  Google Scholar 

  5. X. Liang et al., Scripta Mater., 134, 42 (2017).

    Article  Google Scholar 

  6. X. Wan, Y. Feng, et al., Appl. Phys. Lett., 114, 221903 (2019).

    Article  ADS  Google Scholar 

  7. J. Tušek et al., J. Appl. Phys., 117, 124901 (2015).

    Article  ADS  Google Scholar 

  8. G. J. Pataky, E. Ertekin, and H. Sehitoglu, Acta Mater., 96, 420 (2015).

    Article  ADS  Google Scholar 

  9. Y. Wu, E. Ertekin, and H. Sehitoglu, Acta Mater., 135, 158 (2017).

    Article  ADS  Google Scholar 

  10. J. Tušek et al., Acta Mater., 150, 295 (2018).

    Article  ADS  Google Scholar 

  11. J. I. Kim and S. Miyazaki, Acta Mater., 53, 4545 (2005).

    Article  ADS  Google Scholar 

  12. J. I. Kim, Y. Liu, and S. Miyazaki, Acta Mater., 52, 487 (2004).

    Article  ADS  Google Scholar 

  13. Y. Cao et al., Acta Mater., 194, 178 (2020).

    Article  ADS  Google Scholar 

  14. G. W.H. Hohne, W. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry: an Introduction for Practitioners, Springer Verlag, N. Y. (1996).

    Book  Google Scholar 

  15. Y. I. Chumlyakov, I. V. Kireeva, E. Y. Panchenko, et al., Shape Memory Alloys: Properties , Technologies, Opportunities, Trans Tech Publications Ltd, Switzerland (2015).

    Google Scholar 

  16. S. Miyazaki and C. M. Wayman, Acta Metall., 36, 181 (1998).

    Article  Google Scholar 

  17. E. E. Timofeeva et al., J. Alloys Compounds, 817, 152719 (2020).

    Article  Google Scholar 

  18. E. E. Timofeeva, E. Yu. Panchenko, N. Yu. Surikov, et al., Russ. Phys. J., 61, No. 12, 2231 (2019).

    Article  Google Scholar 

  19. S. Miyazaki and K. Otsuka, Metall. Trans. A, 17A, 53 (1986).

    Article  ADS  Google Scholar 

  20. E. Hornbogen, V. Mertinger, and D. Wurzel, Scripta Mater., 44, 171 (2001).

    Article  Google Scholar 

  21. E. Y. Panchenko, Y. I. Chumlyakov, I. V. Kireeva, et al., Fiz. Met. Metalloved., 106, No. 6, 597–603 (2008).

    Google Scholar 

  22. N. Yu. Surikov et al., J. Alloys Compounds, 880, 160553 (2021).

    Article  Google Scholar 

  23. J. Tušek et al., Shape Memory and Superelasticity, 2, 317 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Surikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 114–119, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surikov, N.Y., Panchenko, E.Y. & Chumlyakov, Y.I. The Elastocaloric Effect in [001]-Single Crystals of Titanium Nickelide Containing Nanosized Ti3Ni4 Particles. Russ Phys J 64, 1708–1714 (2022). https://doi.org/10.1007/s11182-022-02511-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02511-w

Keywords

Navigation