Skip to main content

Advertisement

Log in

Clustering Method of Chaotic Particle Swarm Optimization Sensor Networks Based on Multifactor Conflict

  • Published:
Russian Physics Journal Aims and scope

In order to solve the multi-factor conflict problem in a cluster head selection process, to optimize it and prolong the network life cycle, a chaotic particle swarm optimization method based on the multi-factor conflict is proposed for clustering the sensor networks. The object of study is a sensor network with a hierarchical clustering network topology, which includes cluster member nodes, cluster head nodes and sink nodes. The energy consumption model of data acquisition and processing in the network nodes is constructed. Four kinds of multi-factor collision problems of the node residual energy, the inter-nodal energy balance and the distance between the base stations, as well as the probability of the node acting as a cluster head are discussed. An energy balance index based on the standard deviation of the node residual energy is introduced to construct an adaptive degree function to obtain the relationship between the current and the previous adaptive degrees of particles. Then, the inertia weight is determined. The chaotic particle swarm optimization algorithm based on the adaptive inertia weight is used to optimize the cluster head selection. The nodes in the communication area are regarded as the cluster members. The cluster head number can meet the optimal cluster head number, which further improves the network energy efficiency. The simulation results show that the death time of the first node, the half node and the last node of the sensor network clustered by this method is 83.33%, 34.14% and 43.14% longer than that of the LEACH method, respectively. The energy consumption of the sensor network clustering is low, the network life cycle is long and the clustering effect is good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. S. Rao, P. K. Jana and H. A. Banka., Wirel. Netw., 23, No. 7, 2005–2020 (2017).

    Article  Google Scholar 

  2. T. Kang and S. F. Wei, Int. Tech. Sens., No.1, 122–125 (2019)

    Google Scholar 

  3. D. F. Zhong, J. J. Xue, F. He, et al., Chin. High Technol. Lett., 27, No. 6, 530–536 (2017).

    Google Scholar 

  4. Y. W. Du, K. Feng and Y. X. Lian, J. Chin. Comput. Syst., 38, No. 10, 2221–2225 (2017).

    Google Scholar 

  5. W. He, H. Ling, Z. Zhang, et al., Int. J. Geogr. Inform. Sci., 32, No. 4, 827–846 (2018).

    Article  Google Scholar 

  6. G. Li and W. Wang, Control Eng. Chin., 24, No. 7, 1359–1365 (2017).

    Google Scholar 

  7. S. Q. Tian, B. H. Lang and T. L. Han, J. Jilin Univ., (Inf. Sci. Ed.), 36, No. 1, 19–21 (2018).

    Google Scholar 

  8. D. D. Dong, B. F. Liu, X. Dong, et al. Chin. J. Sens. Actuator., 30, No. 12, 1918–1924 (2017).

    Google Scholar 

  9. X. W. Li, Comput. Simulation, 35, No. 3, 205–209 (2018).

    ADS  Google Scholar 

  10. Z. Z. Liu and Liu Y., J. Chin. Comput. Syst., 38, No. 10, 2207–2210 (2017).

    Google Scholar 

  11. Y. J. Sun, Wool Text. J., 45, No. 9, 80–85 (2017).

    Google Scholar 

  12. Q. Yu, J. H. Li, Q. F. Zhao, et al., Elect. Meas. Instrum., 54, No. 13, 110–114 (2017).

    Google Scholar 

  13. B. Wu, C. Cui, J. Yu, et al., Comput. Sci., No. 2, 157–162 (2017).

    Google Scholar 

  14. L. S. Li and X. J. Zhang, Comput. Eng. Appl., 54, No. 9, 139–144 (2018).

    Google Scholar 

  15. J. Zhao, Z. G. Yu, X. Feng, et al., J. Chin. Acad. Electron. Inf. Technol., 13, No. 03, 38–45 (2018).

    Google Scholar 

  16. Z. Li, Y. F. Chen., B. Zhang, et al., J. Pow. Supply, 15, No. 3, 148–155 (2017).

    Google Scholar 

  17. P. Peng, H. X. Cheng, X. C. Chen, et al., Chin. J. Pow. Source., 41, No. 11, 1541–1544 (2017).

    Google Scholar 

  18. Y.G. Hu, X.L. Meng, C. Zhao, et al., Automation Instrum., No. 6, 14–15 (2015).

  19. C. H. Wang, W. N. Shen and H. S. Hu, J. Jilin Univ. (Sci. Ed.), 56, No. 3, 169–176 (2018).

    Google Scholar 

  20. H. J. Dong, S. Y. Wei, X. C. Liu, et al., Comput. Sci., 45, No. 1, 14–23 (2018).

    Google Scholar 

  21. J. Chen, Comput. Simulat., 34, No. 10, 277–280 (2017).

    Google Scholar 

  22. A. Atangana and R. T. Alqahtani, Math. Modell. Nat. Ph., 14, No. 3, 313 (2019).

    Article  Google Scholar 

  23. K. M. Saad, D. Baleanu and A. Atangana, Comput. Appl. Math., 37, No. 4, 5203–5216 (2018).

    Article  MathSciNet  Google Scholar 

  24. Z. Xiong, et al., Multimedia Tools App., 78, No. 22, 31035–31055 (2019).

    Article  Google Scholar 

  25. H. G. Citil, Appl. Math. Nonlinear Sci., 4, No. 2, 407–416 (2019).

    Article  MathSciNet  Google Scholar 

  26. R. A. Mundewadi, and S. Kumbinarasaiah, Appl. Math. Nonlinear Sci., 4, No. 2, 395–406 (2019).

    Article  MathSciNet  Google Scholar 

  27. M. Naeem, M. K. Siddiqui, J. L. G. Guirao, et al., Appl. Math. Nonlinear Sci., 3, No. 1, 209–228 (2020).

    Article  Google Scholar 

  28. S. B. Venkatesha, Appl. Math. Nonlinear Sci., 5, No. 1, 85–92 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Liu.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 99–108, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Qian, J., Zhou, A. et al. Clustering Method of Chaotic Particle Swarm Optimization Sensor Networks Based on Multifactor Conflict. Russ Phys J 64, 1485–1497 (2021). https://doi.org/10.1007/s11182-021-02481-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02481-5

Keywords

Navigation