Skip to main content
Log in

Excess Atomic Volume and its Role in Fracture of Nickel Single Crystals

  • Published:
Russian Physics Journal Aims and scope

The paper studies the crack propagation in the nickel single crystal under uniaxial tension along the [010] crystallographic direction using the molecular dynamics simulation. It is found that at room temperature, the formation of excess atomic volume occurs nearby the crack tip. Later, nanopores appear in these regions, which then join with the crack, thereby promoting a high-speed opening of the latter. It is shown that when the formation of dislocations is observed in the regions of the excess atomic volume, nearby the crack tip, the crack propagation velocity substantially lowers in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Pao, S. M. Foils, E. B. Webb, et al., Phys. Rev. B, 79, 224113 (2009).

    Article  ADS  Google Scholar 

  2. S. Y. Hu, M. Ludwig, P. Kizler, et al., Modelling Simul. Mater. Sci. Eng., 6, 567–586 (1998).

    Article  ADS  Google Scholar 

  3. R. Matsumoto, M. Nakagaki, A. Nakatani, et al., Comput. Model. Eng. Sci., 9, 75–84 (2005).

    Google Scholar 

  4. L. Li, L. Shen, and G. Proust, Mech. Mater., 81, 84–93 (2015).

    Article  Google Scholar 

  5. S. Yang, G. Ma, X. Ren, and F. Ren, Eng. Anal. Bound. Elem., 43, 37–49 (2014).

    Article  Google Scholar 

  6. U. A. Özden, A. Bezold, and C. Broeckmann, Procedia Materials Science, 3, 1518–1523 (2014).

    Article  Google Scholar 

  7. A. Keyhani, M. Goudarzi, S. Mohammadi, and R. Roumina, Comput. Mater. Sci., 104, 98–107 (2015).

    Article  Google Scholar 

  8. J. Petucci, C. LeBlond, and M. Karimi, Comput. Mater. Sci., 86, 130–139 (2014).

    Article  Google Scholar 

  9. K. W. K. Leung, Z. L. Pan, and D. H. Warner, Acta Mater., 77, 324–334 (2014).

    Article  ADS  Google Scholar 

  10. K. P. Zolnikov, A. V. Korchuganov, D. S. Kryzhevich, et al., Phys. Mesomech., 22, 355–364 (2019).

    Article  Google Scholar 

  11. K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Russ. Phys. J., 63, No. 6, 947–953 (2020).

    Article  Google Scholar 

  12. J. Zhang and S. Ghosh, J. Mech. Phys. Solids, 61, 1670–1690 (2013).

    Article  ADS  Google Scholar 

  13. C. B. Cui and H. G. Beom, Mat. Sci. Eng. A-Struct., 609, 102–109 (2014).

    Article  Google Scholar 

  14. S. Xu and X. Deng, Nanotechnology, 19, 115705 (2008).

    Article  ADS  Google Scholar 

  15. J. Zhang and S. Ghosh, J. Mech. Phys. Solids, 61, 1670–1690 (2013).

    Article  ADS  Google Scholar 

  16. P. H. Sung and T. C. Chen, Comput. Mater. Sci., 102, 151–158 (2015).

    Article  Google Scholar 

  17. A. V. Korchuganov, A. N. Tyumentsev, K. P. Zolnikov, et al., J. Mater. Sci. Technol., 35, No. 1, 201–206 (2019).

    Article  Google Scholar 

  18. S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Sci. Rep., 9, 3867 (2019).

    Article  ADS  Google Scholar 

  19. K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Pis’ma o materialakh, 9, No. 2, 197–201 (2019).

  20. D. S. Kryzhevich, K. P. Zolnikov, and A. V. Korchuganov, Comput. Mater. Sci., 153, 445–448 (2018).

    Article  Google Scholar 

  21. H. Zheng, A. Cao, C. Weinberger, et al., Nat. Commun., 1, 144 (2010).

    Article  ADS  Google Scholar 

  22. V. Sorkin, E. Polturak, and J. Adler, Phys. Rev. B: Condens. Matter., 68, 174102 (2003).

    Article  ADS  Google Scholar 

  23. S. Plimpton, J. Comput. Phys., 117, 1–19 (1995).

    Google Scholar 

  24. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B: Condens. Matter., 33, 7983 (1986).

    Article  ADS  Google Scholar 

  25. J. D. Honeycutt and H. C. Andersen, J. Phys. Chem., 91, 4950–4963 (1987).

    Google Scholar 

  26. A. Stukowski and K. Albe, Modelling Simul. Mater. Sci. Eng., 18, 085001 (2010).

  27. A. Stukowski, Modelling Simul. Mater. Sci. Eng., 18, 015012 (2010).

  28. F. Cleri, S. Yip, D. Wolf, and S. R. Phillpot, Phys. Rev. Lett., 79, 1309–1312 (1997).

    Article  ADS  Google Scholar 

  29. H. Kimizuka, H. Kaburaki, F., Shimizu and J. Li, J. Comput. Aided Mol. Des., 10, 143–154 (2003).

  30. S. Xu and X. Deng, Nanotechnology, 19, 115705 (2008).

    Article  ADS  Google Scholar 

  31. W.-P. Wu and Z.-Z. Yao, Theor. Appl. Fract. Mech., 62, 67–75 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kryzhevich.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 24–29, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryzhevich, D.S., Korchuganov, A.V. & Zolnikov, K.P. Excess Atomic Volume and its Role in Fracture of Nickel Single Crystals. Russ Phys J 64, 1198–1204 (2021). https://doi.org/10.1007/s11182-021-02444-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02444-w

Keywords

Navigation