Skip to main content
Log in

Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, constant load bending tests were performed on a nanocrystalline Ni nanowire specimen at different deformation temperatures using molecular dynamics simulation to investigate deformation behavior and mechanisms responsible for fracture. The nature of the fracture occurred in this nanowire specimen is found to transit from brittle to ductile as the temperature rises from 500 to 800 K. Also, with an increase in temperature, the fracture strain is increased indicating more plastic deformation prior to fracture. In the case of 500 K and 600 K deformation temperatures, fracture occurred along the shear band due to slip-twin interaction. On the other hand, at comparatively higher deformation temperatures, such as 700 K and 800 K, twinning and detwinning mechanisms are responsible for accommodating large plastic strain before fracture thus imparting plasticity in the specimen. It has also been found that formation and collapse of the stacking fault tetrahedron causes fracture of nanocrystalline Ni nanowire at 800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Weinberger CR, Cai W (2012) Plasticity of metal nanowires. J Mater Chem 22(8):3277–3292

    Article  CAS  Google Scholar 

  2. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525

    Article  CAS  PubMed  Google Scholar 

  3. Rezaei R, Deng C (2017) Pseudoelasticity and shape memory effects in cylindrical FCC metal nanowires. Acta Mater 132:49–56

    Article  CAS  Google Scholar 

  4. An BH, Jeon IT, Seo JH, Ahn JP, Kraft O, Choi IS, Kim YK (2016) Ultrahigh tensile strength nanowires with a Ni/Ni–Au multilayer nanocrystalline structure. Nano Lett 16(6):3500–3506

    Article  CAS  PubMed  Google Scholar 

  5. Oener SZ, van de Groep J, Macco B, Bronsveld PC, Kessels WMM, Polman A, Garnett EC (2016) Metal–insulator–semiconductor nanowire network solar cells. Nano Lett 16(6):3689–3695

    Article  CAS  PubMed  Google Scholar 

  6. Tian B, Zheng X, Kempa TJ, FangY YN, Yu G, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889

    Article  CAS  PubMed  Google Scholar 

  7. Yu K, Major TA, Chakraborty D, Devadas MS, Sader JE, Hartland GV (2015) Compressible viscoelastic liquid effects generated by the breathing modes of isolated metal nanowires. Nano Lett 15(6):3964–3970

    Article  CAS  PubMed  Google Scholar 

  8. Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503(4):115–163

    Article  CAS  Google Scholar 

  9. Lu Y, Song J, Huang JY, Lou J (2011) Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res 4(12):1261–1267

    Article  CAS  Google Scholar 

  10. Chen LY, He MR, Shin J, Richter G, Gianola DS (2015) Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat Mater 14(7):707

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao SX (2013) Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun 4:1742

    Article  PubMed  CAS  Google Scholar 

  12. Zhu Y, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wang ZL (2012) Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys Rev B 85(4):045443

    Article  CAS  Google Scholar 

  13. Elsner BAM, Müller S, Bargmann S, Weissmüller J (2017) Surface excess elasticity of gold: Ab initio coefficients and impact on the effective elastic response of nanowires. Acta Mater 124:468–477

    Article  CAS  Google Scholar 

  14. Esfahani MN, Sonne MR, Hattel JH, Alaca BE (2016) Thermo-coupled surface Cauchy–Born theory: an engineering finite element approach to modeling of nanowire thermomechanical response. Mech Mater 94:46–52

    Article  Google Scholar 

  15. Sepúlveda-Macías M, Amigo N, Gutiérrez G (2016) Onset of plasticity and its relation to atomic structure in CuZr metallic glass nanowire: a molecular dynamics study. J Alloys Compd 655:357–363

    Article  CAS  Google Scholar 

  16. Lao J, Tam MN, Pinisetty D, Gupta N (2013) Molecular dynamics simulation of FCC metallic nanowires: a review. JOM 65(2):175–184

    Article  CAS  Google Scholar 

  17. Hu L, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5):2955–2963

    Article  CAS  PubMed  Google Scholar 

  18. Yao S, Zhu Y (2015) Nanomaterial enabled stretchable conductors: strategies, materials and devices. Adv Mater 27(9):1480–1511

    Article  CAS  PubMed  Google Scholar 

  19. Lim JW, Cho DY, Eun K, Choa SH, Na SI, Kim J, Kim HK (2012) Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells. Sol Energy Mater Sol Cells 105:69–76

    Article  CAS  Google Scholar 

  20. Nath SD (2014) Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Comput Mater Sci 87:138–144

    Article  CAS  Google Scholar 

  21. Zhan HF, Gu Y, Yan C, Yarlagadda PKDV (2014) Bending properties of Ag nanowires with pre-existing surface defects. Comput Mater Sci 81:45–51

    Article  CAS  Google Scholar 

  22. Nöhring WG, Möller JJ, Xie Z, Bitzek E (2016) Wedge-shaped twins and pseudoelasticity in fcc metallic nanowires under bending. Extreme Mech Lett 8:140–150

    Article  Google Scholar 

  23. Klinger L, Rabkin E (2006) Thermal stability and creep of polycrystalline nanowires. Acta Mater 54(2):305–311

    Article  CAS  Google Scholar 

  24. Meraj M, Pal S (2017) Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy. Met Mater Int 23(2):272–282

    Article  CAS  Google Scholar 

  25. Pal S, Meraj M, Deng C (2017) Effect of Zr addition on creep properties of ultra-fine grained nanocrystalline Ni studied by molecular dynamics simulations. Comput Mater Sci 126:382–392

    Article  CAS  Google Scholar 

  26. Pal S, Meraj M (2016) Structural evaluation and deformation features of interface of joint between nano-crystalline Fe–Ni–Cr alloy and nano-crystalline Ni during creep process. Mater Des 108:168–182

    Article  CAS  Google Scholar 

  27. Reddy KV, Meraj M, Pal S (2017) Mechanistic study of bending creep behaviour of bicrystal nanobeam. Comput Mater Sci 136:36–43

    Article  CAS  Google Scholar 

  28. Hirel P (2015) Atomsk: a tool for manipulating and converting atomic data files. Comput Phys Commun 197:212–219

    Article  CAS  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  30. Mendelev MI, Kramer MJ, Hao SG, Ho KM, Wang CZ (2012) Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Philos Mag 92(35):4454–4469

    Article  CAS  Google Scholar 

  31. Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83(8):4069–4074

    Article  CAS  Google Scholar 

  32. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  33. Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91(19):4950–4963

    Article  CAS  Google Scholar 

  34. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

  35. Shimizu F, Ogata S, Li J (2007) Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater Trans 48(11):2923–2927

    Article  CAS  Google Scholar 

  36. Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev B 57(6):7192

    Article  CAS  Google Scholar 

  37. Zhang JC, Chen C, Pei QX, Wan Q, Zhang WX, Sha ZD (2015) Ab initio molecular dynamics study of the local atomic structures in monatomic metallic liquid and glass. Mater Des 77:1–5

    Article  CAS  Google Scholar 

  38. Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci 2(2):279–286

    Article  CAS  Google Scholar 

  39. Timoshenko SP, Gere JM (1972) Mechanics of materials. Reinhold, New York

  40. O’Brien CJ, Foiles SM (2016) Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion. J Mater Sci 51(14):6607–6623

    Article  CAS  Google Scholar 

  41. Kim HS, Estrin Y, Bush MB (2000) Plastic deformation behaviour of fine-grained materials. Acta Mater 48(2):493–504

    Article  CAS  Google Scholar 

  42. Kassner ME, Smith KK, Campbell CS (2015) Low-temperature creep in pure metals and alloys. J Mater Sci 50(20):6539–6551

    Article  CAS  Google Scholar 

  43. Jia N, Eisenlohr P, Roters F, Raabe D, Zhao X (2012) Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater 60(8):3415–3434

    Article  CAS  Google Scholar 

  44. Qu S, Zhou H, Huang Z (2011) Shear band initiation induced by slip-twin boundary interactions. Scr Mater 65(8):715–718

    Article  CAS  Google Scholar 

  45. Lagerlöf KPD, Castaing J, Pirouz P, Heuer AH (2002) Nucleation and growth of deformation twins: a perspective based on the double-cross-slip mechanism of deformation twinning. Philos Mag A 82(15):2841–2854

    Article  Google Scholar 

  46. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Deformation twinning in nanocrystalline aluminum. Science 300(5623):1275–1277

    Article  CAS  PubMed  Google Scholar 

  47. Seita M, Hanson JP, Gradecak S, Demkowicz MJ (2015) The dual role of coherent twin boundaries in hydrogen embrittlement. Nat Commun 6:6164

    Article  CAS  PubMed  Google Scholar 

  48. Prasad KE, Ramamurty U (2012) Effect of temperature on the plastic zone size and the shear band density in a bulk metallic glass. Mater Sci Eng A 535:48–52

    Article  CAS  Google Scholar 

  49. Pineau A, Benzerga AA, Pardoen T (2016) Failure of metals I: brittle and ductile fracture. Acta Mater 107:424–483

    Article  CAS  Google Scholar 

  50. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2003) Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater 51(14):4135–4147

    Article  CAS  Google Scholar 

  51. Li PT, Yang YQ, Luo X, Jin N, Liu G, Feng ZQ (2017) Effect of rate dependence of crack propagation processes on amorphization in Al. Mater Sci Eng A 684:71–77

    Article  CAS  Google Scholar 

  52. Zhu T, Gao H (2012) Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scr Mater 66(11):843–848

    Article  CAS  Google Scholar 

  53. Zhu YT, Wu XL, Liao XZ, Narayan J, Kecskes LJ, Mathaudhu SN (2011) Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater 59(2):812–821

    Article  CAS  Google Scholar 

  54. Silcox J, Hirsch PB (1959) Direct observations of defects in quenched gold. Philos Mag 4(37):72–89

    Article  CAS  Google Scholar 

  55. Wu L, Yu W, Hu S, Shen S (2017) Stability of stacking fault tetrahedron in twin boundary bicrystal copper under shear. Int J Plast 97:246–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Computer Centre of National Institute of Technology Rourkela for providing the high-performance computing facility (HPCF), which was essential for carrying out this molecular dynamics study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V., Pal, S. Influence of dislocations, twins, and stacking faults on the fracture behavior of nanocrystalline Ni nanowire under constant bending load: a molecular dynamics study. J Mol Model 24, 277 (2018). https://doi.org/10.1007/s00894-018-3813-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3813-6

Keywords

Navigation