Skip to main content
Log in

The Effect of Phase Transformations During Electrom-Beam 3D-Printing and Post-Built Heat Treatment on Plastic Deformation and Fracture of Additively Manufactured High Nitrogen Cr–Mn Steel

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The phase composition, plastic deformation and fracture micromechanisms of Fe–(25–26)Cr–(5–12)Mn–0.15C–0.55N (wt.%) high-nitrogen chromium-manganese steel, manufactured by electron-beam 3D-printing (additive manufacturing) and subjected to heat treatment (at a temperature of 1150°C followed by quenching), are studied. In order to identify the effect of the electron-beam 3D-printing process on the phase composition, microstructure and mechanical properties of high-nitrogen steel, the data obtained are compared with those for Fe–21Cr–22Mn–0.15C–0.53N austenitic steel (wt.%) formed by traditional methods (casting and heat treatment) and used as a material for additive manufacturing. It is experimentally observed that in the specimens formed by additive manufacturing, the depletion of the steel composition in manganese during the electron-beam 3D-printing and post-built heat treatment contributes to the formation of a macro- and microscopically inhomogeneous two-phase structure. The steel specimens contain irregularly shaped macroscopic regions with large ferrite grains or with a two-phase austenite-ferrite structure (microscopic inhomogeneity). Despite the change in the concentration of the basic elements (chromium and manganese) in additive manufacturing, there remains a high concentration of interstitial atoms (nitrogen and carbon). This contributes to a macroscopically heterogeneous distribution of interstitial atoms in the specimens – the formation of a supersaturated interstitial solid solution in the austenitic regions due to the low solubility of nitrogen and carbon in the ferrite regions. This inhomogeneous heterophase (ferrite-austenite) structure exhibits high strength properties, good ductility and work hardening, which are close to those of the specimens of the initial high-nitrogen austenitic steel used as the raw material for additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Frazier, Metal Additive Manufacturing: A Review. JMEPEG, 23 (6), 1917 (2014).

  2. N. Li, S. Huang, G. Zhang, et al., J. Mater. Sci. Tech., 35, 249 (2019).

    ADS  Google Scholar 

  3. D. Ding, Z. I. Pan, D. Cuiuri, and H. Li, Int. J. Adv. Manuf. Technol., 81, 465 (2015).

    Article  Google Scholar 

  4. E. G. Astafurova, M.Yu. Panchenko, V. A. Moskvina, et al., J. Mater. Sci., 55, 9211 (2020).

    Article  ADS  Google Scholar 

  5. S. Yu. Tarasov, A. V. Filippov, N. N. Shamarin, et al., J. Alloys Compd., 803, 364 (2019).

    Article  Google Scholar 

  6. A. V. Kolubaev, S. Yu. Tarasov, A. V. Filippov, et al., Russ. Phys. J., 61, No. 8, 1491 (2018).

    Article  Google Scholar 

  7. E. V. Melnikov, E. G. Astafurova, S. V. Astafurov, et al., Lett. Mater., 9(4), 460 (2019).

    Article  Google Scholar 

  8. X. Chen, J. Li, X. Cheng, et al., Mater. Sci. Eng. A, 715, 307 (2018).

    Article  Google Scholar 

  9. P. Bajaj, A. Hariharan, A. Kini, et al., Mater. Sci. Eng. A, 772, 138633 (2020).

  10. X. Zhang, Q. Zhou, K. Wang, et al., Mater. Des., 166, 107611 (2019).

  11. V. E. Panin, N. A. Narkevich, V. G. Durakov, and I. A. Shulepov, Phys. Mesomech., 23(2), 15 (2020).

  12. V. G. Gavriljuk and H Berns, High Nitrogen Steels, Springer Verlag, Berlin (1999).

    Book  Google Scholar 

  13. D. Yang, Y. Huang, J. Fan, et al., J. Manuf. Proc., 61, 261 (2021).

    Article  Google Scholar 

  14. J. Boes, A. Röttger, and W. Theisen, Additive Manuf., 32, 101081 (2020).

  15. E. A. Lass, F. Zhang, and C. E. Campbell, Metallurg. Mater. Trans. A, 51, 2318 (2020).

    Article  ADS  Google Scholar 

  16. X. Zhang, K. Wang, Q. Zhou, et al., Mater. Today Comm., 27, 102263 (2021).

  17. K. A. Reunova, E. G. Astafurova, S. V. Astafurov, et al., AIP Conf. Proc., 2310, 020275 (2020).

  18. K. A. Reunova, E. G. Astafurova, S. V. Astafurov, et al., AIP Conf. Proc., 2310, 020276 (2020).

  19. E. G. Astafurova, V. A. Moskvina, G. G. Maier, et al., Mater. Sci. Eng. A, 745, 265 (2019).

    Article  Google Scholar 

  20. Yu. I. Chumlyakov, I. V. Kireeva, E. G. Zakharova, et al., Russ. Phys. J., 45, No. 3, 274 (2002).

    Article  Google Scholar 

  21. H. A. Wriedt, N. A. Gokcen, and R. H. Nafziger, Bull. Alloy Phase Diagr., 8(4), 355 (1987).

    Article  Google Scholar 

  22. S. J. Lee and Y. K. Lee, Scripta Mater., 52, 973 (2005).

    Article  Google Scholar 

  23. T. Ping, J. Gong, Y. Wang, et al., Results Phys., 11, 377 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Astafurova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 10–17, July, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurova, E.G., Reunova, K.A., Astafurov, S.V. et al. The Effect of Phase Transformations During Electrom-Beam 3D-Printing and Post-Built Heat Treatment on Plastic Deformation and Fracture of Additively Manufactured High Nitrogen Cr–Mn Steel. Russ Phys J 64, 1183–1190 (2021). https://doi.org/10.1007/s11182-021-02442-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02442-y

Keywords

Navigation