Skip to main content
Log in

The Influence of Phase Composition and Phase Distribution on Crack Formation and Fracture Mechanisms of Cr–Ni Steels Produced by the Method of 3D Electron-Beam Printing

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

The features of crack formation near the fracture region and the fracture micromechanism are investigated during uniaxial tension of specimens of Ni–Cr stainless steels, Fe–19Cr–9Ni–0.1C and Fe–19Cr–9Ni–1.4Nb–0.1C, produced by the method of 3D wire-feed electron beam additive manufacturing (EBAM) as a function of the phase composition and phase distribution in the structure. It is found out that in the specimens with a twophase (austenite/δ-ferrite) microstructure the ferrite morphology and its volume content (up 25%) affect the plastic shear distribution in austenite and ferrite and exert a slight influence on the formation of strain localization micro- and macrobands in the pre-fracture stage, and the crack-formation mechanism is similar to that observed in cast stainless steels of similar compositions, which possess single-phase austenitic structure. In additively-manufactured steel containing niobium the formation of brittle niobium- and iron-based intermetallic phases favors the formation of pores and microcracks at the austenite/NbFeCrNi-phase or the δ- ferrite/NbFeCrNi-phase interfaces, while the processes of cracking in the strain localization bands (and their formation) turn out to be suppressed. Irrespective of the elemental and phase compositions of steel specimensformed by the method of 3D additive manufacturing, the principal micromechanism of their fracture, transgranular dimple fracture, is similar to that observed in the cast specimens of austenitic stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ding, Z. I. Pan, D. Cuiuri, and H. Li, Int. J. Adv. Manuf. Technol., 81, 465−481 (2015).

    Article  Google Scholar 

  2. K. H. Lo, C. H. Shek, and J. K.L. Lai, Mat. Sci. and Eng.: R: Reports, 65, 39−104 (2009).

    Article  Google Scholar 

  3. N. Li, S. Huang, G. Zhang, et. al., J. Mater. Sci. Technol., 35, 249–269 (2019).

  4. C. R. Cunningham, J. M. Flynn, A. Shokrani, et. al., Add. Manuf., 22, 672−686 (2018).

  5. W. E. Frazier, Metal Additive Manufacturing. A. Rev. J. Mater. Eng. Performance, 23(6), 1917–1928 (2014).

    Article  ADS  Google Scholar 

  6. V. Laghi, M. Palermo, L. Tonelli, et al., Int. J. Adv. Manuf. Technol., 106, 3693– 3705 (2020).

    Article  Google Scholar 

  7. S.Yu. Tarasov, A. V. Filippov, N. N. Shamarin, et al., J. Alloys Compd., 803, 364–370 (2019).

    Article  Google Scholar 

  8. Zh. Wang, T. A. Palmer, and A. M. Beese, Acta Mater., 110, 226–235 (2016).

    Article  Google Scholar 

  9. X. Chen, J. Li, X. Cheng, et al., Mat. Sci. Eng. A, 715, 307–314 (2018).

    Article  Google Scholar 

  10. K. Zhang, S. Wang, W. Liu, and X. Shang, Mater. Des., 55, 104–119 (2014).

    Article  Google Scholar 

  11. M. Godec, S. Zaefferer, B. Podgornik, et al., Mat. Charact., 160, 110074 (2020).

    Article  Google Scholar 

  12. E. G. Astafurova, M.Yu. Panchenko, V. A. Moskvina, et al., J. Mater. Sci., 55, 9211–9224 (2020).

    Google Scholar 

  13. A. V. Kolubaev, S. Yu. Tarasov, A. V. Filippov, et al., Russ. Phys. J., 61, No. 7, 1491–1498 (2018).

    Article  Google Scholar 

  14. Y. D. Wang, H. B. Tang, Y. L. Fang, and H. M. Wang, Mat. Sci. Eng. A, 527, 4804−4809 (2010).

    Article  Google Scholar 

  15. X. Chen, J. Li, X. Cheng, et al., Mater. Sci. Eng. A, 703, 567–577 (2017).

    Article  Google Scholar 

  16. A. Yadollahi, N. Shamsaei, S. M. Thompson, and D. W. Seely, Mater. Sci. Eng. A, 644, 171−183 (2015).

    Article  Google Scholar 

  17. M. Yu. Panchenko, E. G. Astafurova, V. A. Moskvina, et al., Nanosci. Technol.: Int. J. (2020) (in print).

  18. E. G. Astafurova, E. V. Melnikov, S. V. Astafurov, et al., Phys. Mesomech., 22(4), 313−326 (2019).

    Article  Google Scholar 

  19. M. A. Shtremel, Fracture, Book 2, Fracture of Structures [in Russian], MISIS, Moscow (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. G. Astafurova or M. Yu. Panchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 16–24, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurova, E.G., Moskvina, V.A., Panchenko, M.Y. et al. The Influence of Phase Composition and Phase Distribution on Crack Formation and Fracture Mechanisms of Cr–Ni Steels Produced by the Method of 3D Electron-Beam Printing. Russ Phys J 63, 917–925 (2020). https://doi.org/10.1007/s11182-020-02118-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02118-z

Keywords

Navigation