Skip to main content
Log in

β-BBO, LBO, AND KTP Nonlinear Crystals as Sources of Millimeter-Wave Radiation

  • Published:
Russian Physics Journal Aims and scope

The refractive indices and the absorption coefficients of β-BBO, LBO, and KTP nonlinear optical crystals have been measured in the wavelength range of 0.5–3 mm at temperatures of 298 and 78 K. The absorption coefficients of all crystals at a wavelength of 1 mm do not exceed 3.5 cm–1 and fall with cooling. The anisotropy of the absorption coefficients of crystals increases significantly with decreasing wavelength (<1 mm), while at wavelengths >2 mm, it almost disappears. Upon cooling, the absolute values of the absorption coefficients fall below 0.2 cm–1. Based on the measured refractive indices, the collinear phase-matching curves are simulated numerically. The theoretical feasibility of IR (1.064 μm) laser radiation conversion into the millimeter-wave range is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, A. Shutler, and D. Grischkowsky, Opt. Express, 19, No. 9, 8830–8838 (2015).

    Article  ADS  Google Scholar 

  2. G.-R. Kim, T.-I. Jeon, and D. Grischkowsky, Opt. Express, 25, No. 21, 25422–25434 (2017).

    Article  ADS  Google Scholar 

  3. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer Verlag, New York (2005).

    Google Scholar 

  4. Shui-Li Hong, Proc. SPIE, 1437 (1991); https://doi.org/10.1117/12.45145.

  5. A. Kokh, N. Kononova, G. Menneret, et al., J. Crystal Growth, 312,1774–1778 (2010).

    Article  ADS  Google Scholar 

  6. I. Torjman and J. C. Guitel, Z. Kristallogr., 139, 103–115 (1974).

    Article  Google Scholar 

  7. N. A. Nikolaev, Y. M. Andreev, V. D. Antsygin, et al., J. Phys.: Conf. Series, 951, No. 1, Art. No. 012003, 1–4 (2018).

  8. V. D. Antsygin, A. A. Mamrashev, N. A. Nikolaev, et al., Opt. Commun., 309, 333–337 (2013).

    Article  ADS  Google Scholar 

  9. D. M. Lubenko, G. V. Lansky, N. A. Nikolaev, et al., Proc. SPIE, 11322, Art. No. 113222C (2019).

  10. N. G. Kononova, A. E. Kokh, K. A. Kokh, et al., Russ. Phys. J., 59, No. 8, 1307–1315 (2016).

    Article  Google Scholar 

  11. N. A. Nikolaev, Y. M. Andreev, N. G. Kononova, et al., Quant. Electron., 48, 19–21 (2018).

    Article  ADS  Google Scholar 

  12. O. I. Potaturkin, V. D. Antsygin, A. A. Mamrashev, et al., EPJ Web of Conf., 195, 06012 (2018).

    Article  Google Scholar 

  13. A. Mamrashev, N. Nikolaev, V. Antsygin, et al., Crystals, 8, 310 (2018).

    Article  Google Scholar 

  14. C.-R. Wang, Q.-K. Pan, F. Chen, et al., Infrared Phys. Tech., 97, 1–5 (2019).

    Article  ADS  Google Scholar 

  15. A. Kokh, V. Vlezko, K. Kokh, et al., J. Cryst. Growth, 360, 158–161 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Nikolaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 113–116, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, N.A., Lansky, G.V., Andreev, Y.M. et al. β-BBO, LBO, AND KTP Nonlinear Crystals as Sources of Millimeter-Wave Radiation. Russ Phys J 63, 1025–1029 (2020). https://doi.org/10.1007/s11182-020-02132-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02132-1

Keywords

Navigation