Skip to main content
Log in

Nonlinear Optical Crystals for Second Harmonic Generation

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Some important nonlinear optical crystal families in three spectral regions (DUV-FIR) have been discussed with reference to their anionic groups. In the M–F–IR region iodides and chalcopyrite-type compound, in the Vis-NIR region sillenites, perovskites and KTP families and in the DUV region borate compound have been investigated. Their important optical and structural factors have been presented. As moderate birefringence increases phase matching wavelength range, the birefringence measurement has been described in more detail. Recent research has focused on optimizing the structure for obtaining high-LDT crystals in the M–F–IR region and removing the layering structure to achieve large-sized crystals in the DUV region. The entry of small ions in the first case and the replacement of stronger interlayer ions such as Ba and Sr, which have a stronger bond with double layer in the second case, are the solutions presented. Combination of two polarized structure units in such a way to make constructive superposition is followed to rise SHG efficiency. The crystals with 3D network are promising for large size growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. T. Sasaki, Y. Mori, M. Yoshimura, et al., Mater. Sci. Eng. 30, 1 (2000).

    Article  Google Scholar 

  2. R. W. Boyd, Nonlinear Optics (New York, 2007).

    Google Scholar 

  3. M. F. Sheffield, Optical Properties of Solids (Clarendon, Oxford, 2010)

    Google Scholar 

  4. Y. Yang, X. Jiang, Z. Lin, et al., Cryst. 7, 95 (2017).

    Article  Google Scholar 

  5. H. Wu, H. Yu, S. Pan, et al., Inorg. Chem. 56, 8755 (2017).

    Article  Google Scholar 

  6. S. Guo, X. Jiang, L. Liu, et al., Chem. Mater. 28, 8871 (2016).

    Article  Google Scholar 

  7. S. Guo, F. Liang, L. Liu, et al., New J. Chem. 37, 4269 (2017).

    Article  Google Scholar 

  8. J. A. Brant, D. J. Clark, and Y. S. Kim, Chem. Mater. 26, 3045 (2014).

    Article  Google Scholar 

  9. S. Guo, Y. Chi, and G. Guo, Coord. Chem. Rev. 335, 44 (2017).

    Article  Google Scholar 

  10. H. Linnenbank, Y. Grynko, J. Forstner, et al., Light Sci. Appl. 5, 1 (2016).

    Article  Google Scholar 

  11. Z. Luo, C. Lin, W. Zhang, et al., Chem. Mater. 26, 1093 (2014).

    Article  Google Scholar 

  12. Z. Chen, Z. Zhang, X. Dong, et al., Cryst. Growth Des. 17, 2792 (2017).

    Article  Google Scholar 

  13. P. Gunter, Phys. Rep. (Rev. Sect. Phys. Lett.) 93, 199 (1982).

  14. C. Chen and G. Liu, Ann. Rev. Mater. Sci. 16, 203(1986).

    Article  ADS  Google Scholar 

  15. U. Klotzbach and A. Fabián Lasagni, (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-17782-8_2

    Chapter  Google Scholar 

  16. W. Nie, Y. Jia, J. R. Vázquez de Aldana, et al., Sci. Rep. 6, 22310 (2016).

    Article  ADS  Google Scholar 

  17. T. J. Schuyler and M. I. Guzman, Atmosphere 8, 1 (2017).

    Article  Google Scholar 

  18. F. Samavat and S. Solgi, Crystallogr. Rep. 60, 939. (2015).

    Article  ADS  Google Scholar 

  19. G. C. Bhar, A. M. Rudra, P. K. Datta, et al., Pramana J. Phys. 44, 45 (1995).

    Google Scholar 

  20. J. H. Zhang, D. J. Clark, J. A. Brant, et al., Dalton Trans. 44, 11212 (2015).

    Article  Google Scholar 

  21. V. Marinova and M. Veleva, Opt. Mater. 19, 329 (2002).

    Article  ADS  Google Scholar 

  22. H. Lin, H. Chen, Y. Zheng, et al., Dalton Trans. 46, 7714 (2017).

    Article  Google Scholar 

  23. L. Gheorghe, V. Lupei, P. Loiseau, et al., J. Opt. Soc. Am. B 23, 1630 (2006).

    Article  ADS  Google Scholar 

  24. T. T. Tran, H. Yu, J. M. Rondinelli, et al., Chem. Mater. 28, 5238 (2016).

    Article  Google Scholar 

  25. H. Yu, J. Cantwell, H. Wu, et al., Cryst. Growth Des. 16, 3976 (2016).

    Article  Google Scholar 

  26. P. Shiv Halasyamani and W. Zhang, Inorg. Chem. 56, 12077 (2017).

    Article  Google Scholar 

  27. H. Wu, H. Yu, Z. Yang, et al., J. Materiomics 1, 221 (2015).

    Article  Google Scholar 

  28. W. Zhang, H. Yu, H. Wu, and P. Shiv Halasyamani, Chem. Mater. 29, 2655 (2017).

    Article  Google Scholar 

  29. C. T. Chen, L. Bai, Z. Z. Wang, and R. K. Li, J. Cryst. Growth 292, 169 (2006).

    Article  ADS  Google Scholar 

  30. A. S. Korotkov and V. V. Atuchin, Opt. Commun. 281, 2132 (2008).

    Article  ADS  Google Scholar 

  31. A. S. Korotkov and V. V. Atuchin, J. Phys. Chem. Solids 71, 958 (2010).

    Article  ADS  Google Scholar 

  32. G. Han, Y. Wang, X. Su, et al., Sci. Rep. 7, 1901 (2017).

    Article  ADS  Google Scholar 

  33. A. Silambarasan, P. Rajesh, U. Madhusoodanan, and P. Ramasamy, Mater. Res. Innov. 21, 27 (2017).

    Article  Google Scholar 

  34. N. Zhen, K. Wu, Y. Wang, et al., Dalton Trans. 45, 10681 (2016).

    Article  Google Scholar 

  35. F. Jing, P. Fu, Y. Wu, et al., Opt. Mater. 30, 1867 (2008).

    Article  ADS  Google Scholar 

  36. C. Chen, Z. Lin, and Z. Wang, Appl. Phys. B 80, 1 (2005).

    Article  ADS  Google Scholar 

  37. C. Chen, Y. Wang, B. Wu, et al., Nature 373, 322 (1995).

    Article  ADS  Google Scholar 

  38. Z. S. Lin, J. Lin, Z. Z. Wang, et al., J. Phys. Condens. Matter 13, R369 (2001).

    Article  Google Scholar 

  39. C. Chen, Y. Wu, and R. Li, Int. Rev. Phys. Chem. 8, 65 (1989).

    Article  Google Scholar 

  40. C. Chen, B. Wu, Q. Chen, and N. Ye, J. Appl. Phys. 84, 555 (1998).

    Article  ADS  Google Scholar 

  41. C. L. Hu and J. G. Mao, Coord. Chem. Rev. 288, 1 (2015).

    Article  Google Scholar 

  42. V. V. Atuchin and B. I. Kidyarov, 1st International Workshop on Nonlinear Photonics (Kharkov, Ukraine, 2011), p. 1. https://doi.org/10.1109/NLP.2011.6102667.

  43. J. Shi and L. Guo, Prog. Nat. Sci. Mater. 22, 592 (2012).

    Article  Google Scholar 

  44. P. Zhang, Y. Hang, J. Gong, et al., J. Cryst. Growth 364, 57 (2013).

    Article  ADS  Google Scholar 

  45. K. Ning, B. Li, Q. Zhang, et al., Opt. Commun. 349, 94 (2015).

    Article  ADS  Google Scholar 

  46. Z. Z. Lazarevic, P. Mihailovic, S. Kostic, et al., Opt. Mater. 34, 1849 (2012).

    Article  ADS  Google Scholar 

  47. L. K. Cheng and J. D. Bierlein, Ferroelectrics 142, 209 (1993);

    Article  Google Scholar 

  48. F. K. Hopkins, N. C. Femelius, M. C. Ohmer, and D. E. Zelmon, Nonlinear Optical Crystal Development at the USAF Wright Laboratory (Ohio).

  49. P. Yu, L. M. Wu, L. J. Zhou, and L. Chen, J. Am. Chem. Soc. 136, 480 (2014).

    Article  Google Scholar 

  50. A. Walsh and G. W. Watson, J. Phys. Chem. B 109, 18868 (2005).

    Article  Google Scholar 

  51. D. Phanon and I. Gautier-Luneau, Angew. Chem. Int. Ed. 46, 8488 (2007).

    Article  Google Scholar 

  52. C. F. Sun, C. L. Hu, and J. G. Mao, Chem. Commun. 48, 4220 (2012).

    Article  Google Scholar 

  53. T. Hu, L. Qin, K. Fang, et al., Inorg. Chem. 48, 2193 (2009).

    Article  Google Scholar 

  54. Y. Suffren and I. Gautier-Luneau, Eur. J. Inorg. Chem. 2012, 4264 (2012).

    Article  Google Scholar 

  55. Q. Wu, H. Liu, F. Jiang, et al., Chem. Mater. 28, 1413 (2016).

    Article  Google Scholar 

  56. C. Chen, Y. Wu, and R. Li, Chin. Phys. Lett. 2, 389 (1985).

    Article  ADS  Google Scholar 

  57. C. Chen, Y. Wang, Y. Xia, et al., J. Appl. Phys. 77, 2268 (1995).

    Article  ADS  Google Scholar 

  58. G. V. Karas, New Developments in Crystal Growth Research (Nova Science, Michigan, 2005).

    Google Scholar 

  59. Z. Hu, M. Yoshimura, K. Muramatsu, et al., Jpn. J. Appl. Phys. 41, L1131 (2002).

    Article  ADS  Google Scholar 

  60. X. Chen, F. Zhang, L. Liu, et al., Phys. Chem. Chem. Phys. 18, 4362 (2016).

    Article  Google Scholar 

  61. X. Zhang, D. Li, H. Wu, et al., RSC Adv. 6, 14206 (2016).

    Google Scholar 

  62. S. Liu, G. Zhang, K. Feng, and Y. Wu, J. Cryst. Growth 364, 46 (2013).

    Article  ADS  Google Scholar 

  63. X. Zhang, Y. Wu, and Y. Li, J. Cryst. Growth 399, 39 (2014).

    Article  ADS  Google Scholar 

  64. K. Szymborska Małek, M. Ptak, P. E. Tomaszewski, and A. Majchrowski, Vib. Spectrosc. 82, 53 (2016).

    Article  Google Scholar 

  65. R. Arun Kumar, M. Arivanandhan, and Y. Hayakawa, Prog. Cryst. Growth Charact. Mater. 59, 113 (2013).

    Article  Google Scholar 

  66. A. M. El-Naggar, N. S. Alzayed, A. Majchrowski, et al., J. Cryst. Growth 334, 122 (2011).

    Article  ADS  Google Scholar 

  67. F. Shan, Y. Fu, G. Zhang, et al., Opt. Mater. 49, 27 (2015).

    Article  ADS  Google Scholar 

  68. X. W. Xu, T. C. Chong, G. Y. Zhang, et al., J. Cryst. Growth 237–239, 649 (2002).

    Article  ADS  Google Scholar 

  69. R. Arun Kumar, M. Arivanandhan, R. Dhanasekaran, and Y. Hayakawa, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 110, 391 (2013).

    Article  ADS  Google Scholar 

  70. Z. Wang, D. Rajesh, M. Yoshimura, et al., J. Cryst. Growth 318, 625 (2011).

    Article  ADS  Google Scholar 

  71. P. J. Picone, J. Cryst. Growth 87, 421 (1988).

    Article  ADS  Google Scholar 

  72. E. Gharibshahian and M. J. Tafreshi, Cryst. Res. Technol. 50, 603 (2015).

    Article  Google Scholar 

  73. Y. Fujiwara, K. Hoshikawa, and K. Kohama, J. Cryst. Growth 433, 48 (2016).

    Article  ADS  Google Scholar 

  74. D. Feng, W. Wang, Q. Zou, and Z. Geng, Chin. Phys. Lett. 3, 181 (1986).

    Article  ADS  Google Scholar 

  75. M. Senthilkumar, M. Kalidasan, Sugan, and R. Dhanasekaran, J. Cryst. Growth 362, 202 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Solgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgi, S., Tafreshi, M.J. & Ghamsari, M.S. Nonlinear Optical Crystals for Second Harmonic Generation. Crystallogr. Rep. 64, 1138–1149 (2019). https://doi.org/10.1134/S1063774519070204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519070204

Navigation