Skip to main content
Log in

Impedance of MIS Devices Based on nBn Structures from Mercury Cadmium Telluride

  • Published:
Russian Physics Journal Aims and scope

Three types of nBn structures based on mercury cadmium telluride grown by molecular beam epitaxy have been fabricated. As barrier layers in nBn structures, Hg1–xCdxTe at x = 0.67 and 0.84 and the 18 period Hg0.20Cd0.80Te (9 nm) – HgTe (2 nm) superlattice were used. To study the properties of barrier layers based on nBn structures, MIS devices were created using dielectric Al2O3 films. The impedance of the created devices was investigated over wide ranges of voltages, frequencies, and temperatures. Equivalent circuits of MIS devices based on nBn structures in the accumulation mode are proposed. It is shown that measurements of the frequency dependences of the impedance make it possible to determine the values of the differential resistance of the barrier layer in a wide range of conditions. It was found that the values of the differential resistance are determined only by the bulk component of the dark current, and the surface leakage component does not affect the measured impedance of MIS devices. The dependences of the values of the equivalent circuit elements on the area of structures, voltage, and temperature are determined. It is shown that in the temperature range 210–300 K, the values of the differential resistance of the barrier layer based on Hg0.33Cd0.67Te are determined by the diffusion-limited flow of holes from the contact and absorbing layers, at the forward and reverse biases, respectively. The values of the product of the differential resistance and the area are determined for nBn structures with various parameters of the barrier layers. The possibilities of using the measurements of impedance of MIS devices based on nBn structures to study the homogeneity of properties of various layers are demonstrated..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared and Terahertz Detectors, 3rd. ed., Boca Raton: CRC Press, Taylor & Francis Group, (2019).

  2. M. A. Kinch, J. Electron. Mater., 44, 2969–2976 (2015).

    Article  ADS  Google Scholar 

  3. D. A. Reago, S. B. Horn, Jr. J. Campbell, et al., Proc. SPIE, 3701, 108–117 (1999).

    Article  ADS  Google Scholar 

  4. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys., 105, 091101 (2009).

    Article  ADS  Google Scholar 

  5. I. I. Izhnin, K. D. Mynbaev, A. V. Voitsekhovsky, et al., Infrared Phys. Technol., 98, 230–235 (2019).

    Article  ADS  Google Scholar 

  6. C. Lobre, P. H. Jouneau, L. Mollard, et al., J. Electron. Mater., 43, 2908–2914 (2014).

    Article  ADS  Google Scholar 

  7. S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).

    Article  ADS  Google Scholar 

  8. D. Z. Ting, A. Soibel, A. Khoshakhlagh, et al., Appl. Phys. Lett., 113, 021101 (2018).

    Article  ADS  Google Scholar 

  9. A. Soibel, D. Z. Ting, S. B. Rafol, et al., Appl. Phys. Lett., 114, 161103 (2019).

    Article  ADS  Google Scholar 

  10. E. Plis, S. A. Myers, D. A. Ramirez, et al., Proc. SPIE, 9819, 981911 (2016).

    ADS  Google Scholar 

  11. A. Evirgen, J. Abautret, J. P. Perez, et al., Electron. Lett., 50, 1472–1473 (2014).

    Article  ADS  Google Scholar 

  12. N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron Dev., 65, No. 10, 4340–4345 (2018).

    Article  ADS  Google Scholar 

  13. M. Kopytko, Infrared Phys. Technol., 64, 47–55 (2014).

    Article  ADS  Google Scholar 

  14. F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).

    Article  ADS  Google Scholar 

  15. J. He, P. Wang, Q. Li, et al., IEEE Trans. Electron Dev., 67, No. 5, 2001–2007 (2020).

    Article  ADS  Google Scholar 

  16. A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 40, No. 8, 1624– 1629 (2011).

    Article  ADS  Google Scholar 

  17. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).

    Article  ADS  Google Scholar 

  18. S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).

    ADS  Google Scholar 

  19. O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9, 3069– 3075 (2015).

    Article  ADS  Google Scholar 

  20. M. Kopytko, and A. Rogalski, Prog. Quant. Electron., 47, 1–18 (2016).

    Article  ADS  Google Scholar 

  21. M. Kopytko, K. Jóźwikowski, P. Martyniuk, et al., J. Electron. Mater., 45, No. 9, 4563–4573 (2016).

    Article  ADS  Google Scholar 

  22. W. E. Tennant, D. Lee, M. Zandian, et al., J. Electron. Mater., 37, No. 9, 1406– 1410 (2008).

    Article  ADS  Google Scholar 

  23. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol., 102, 103035 (2019).

    Article  Google Scholar 

  24. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., J. Phys. D: Appl. Phys., 53, No. 5, 055107 (2020).

    Google Scholar 

  25. N. D. Akhavan, G. Jolley, G. A. Umana-Membreno, et al., J. Electron. Mater., 44, No. 9, 3044–3055 (2015).

    Article  ADS  Google Scholar 

  26. D. R. Rhiger, E. P. Smith, B. P. Kolasa, et al., J. Electron. Mater., 45, No. 9, 4646–4653 (2016).

    Article  ADS  Google Scholar 

  27. A. Glasmann, I. Prigozhin, and E. Bellotti, IEEE J. Electron Dev. Soc., 7, 534– 543 (2019).

    Article  Google Scholar 

  28. R. Alchaar, J. B. Rodriguez, L. Höglund, et al., AIP Adv., 9, No. 5, 055012 (2019).

    Google Scholar 

  29. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Mater. Res. Expr., 6, No. 11, 116411 (2019).

    Article  ADS  Google Scholar 

  30. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 63, No. 3, 432–445 (2020).

    Article  Google Scholar 

  31. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Semicond. Sci. Technol., 35, No. 5, 055026 (2020).

    Article  ADS  Google Scholar 

  32. R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).

    Article  ADS  Google Scholar 

  33. E. R. Zakirov, V. G. Kesler, G. Y. Sidorov, et al., Semicond. Sci. Technol., 34, No. 6, 065007 (2019).

    Article  ADS  Google Scholar 

  34. I. I. Izhnin, K. R. Kurbanov, A. V. Voitsekhovskii, et al., Appl. Nanosci., (2020). DOI: https://doi.org/10.1007/s13204-020-01297-y.

  35. A. Hood, D. Hoffman, B. M. Nguyen, et al., Appl. Phys. Lett., 89, No. 9, 093506 (2006).

    Article  ADS  Google Scholar 

  36. M. Razeghi, A. Haddadi, A. Dehzangi, et al., Proc. SPIE, 10177, 1017705 (2017).

    Google Scholar 

  37. K. Michalczewski, F. Ivaldi, L. Kubiszyn, et al., Acta Phys. Polonica A, 132, 325–328 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Voitsekhovskii.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 8–15, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Impedance of MIS Devices Based on nBn Structures from Mercury Cadmium Telluride. Russ Phys J 63, 907–916 (2020). https://doi.org/10.1007/s11182-020-02117-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02117-0

Keywords

Navigation