Skip to main content
Log in

The Surface Structure of a TiNi-Based Powder Alloy Manufactured by the Method of Diffusion Sintering

  • Published:
Russian Physics Journal Aims and scope

The structural features of the surface of a TiNi-based powder alloy produced by diffusion sintering are studied. Two-dimensional porous samples based on a TiNi powder alloy are manufactured for the experimental investigation of their structural features by the methods of non-destructive testing. It is determined that the phase composition of the TiNi-based powder alloy is represented by the TiNi (B2) austenitic phase and precipitates of the secondary phases enriched with nickel – Ti3Ni4 and titanium – Ti2Ni. The chemical compositions of the TiNi compound and the Ti2Ni secondary-phase particles are determined. A three-dimensional reconstruction of the surface of the TiNi-based powder alloy is performed by optical profilometry. It is shown that, depending on the sintering temperature regime and particle size distribution of the TiNi powder, it is possible to obtain a developed rough surface with a roughness coefficient within Ra = 64–87 μm. An analysis of the surface microstructure of the resulting material indicates the existence of several types of terraced relief — hexagonal islands of regular shape 5–10 μm and large terraced structures up to 30– 40 μm in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Lanshakov, V. E. Gunther, G. L. Plotkin, et al., Medical materials and shape-memory implants. Shapememory implants for traumatology and orthopeadics [in Russian], Volume 2 (Ed. V.E. Gunther], NPP MITS Publ., Tomsk (2010).

  2. P. G. Sysolyatin, V. E. Gunther, S. P. Sysolyatin, et al., Medical materials and shape-memory implants. Shape-memory implants in oral surgery[in Russian], Vol. 4 (Ed. V. E. Gunther), NPP MITS Publ., Tomsk (2012).

  3. M. Z. Mirgazizov, V. E. Gunther, V. G. Galonskii, et al., Medical materials and shape-memory implants. Shape-memory implants in stomatology [in Russian], Vol. 5 (Ed. V. E. Gunther), NPP MITS Publ., Tomsk (2011).

  4. Biological Responses to Metal Implants [Electronic resource], Food and Drug Administration (FDA) (2019). URL: https://www.fda.gov/media/131150/download (date of reference: 17.01.2020).

  5. S. M. Barinov, Chemistry. Uspekhi, 79, No. 1, 15–32 (2010).

    Google Scholar 

  6. I. A. Kirilova, M. A. Sadovoi, and V. T. Podorozhnaya, Khirurg. Pozvonoch, No. 3, 72–83 (2012).

    Google Scholar 

  7. S. N. Kulkov and S. P. Buyakova, Nanotechnologies in Russia, 2, No. 1–2, 119–132 (2007).

  8. I. A. Kirilova, et al., Khirurg. Pozvonoch, No. 4, 52–62 (2013).

    Google Scholar 

  9. Yu. I. Nyashin, G. I. Rogozhnikov, A. G. Rogozhnikov, et al., Ross. Zh. Biomekh., 16, No. 1(55), 102–109 (2012).

  10. I. A. Kirilova, M. A. Sadovoi, and V. T. Podorozhnaya, Khirurg. Pozvonoch., No. 4, 52–62 (2013).

    Google Scholar 

  11. Q. Chen, C. Zhu, and G. A. Thouas, Progress in Biomaterials, No. 1, 2 (2012).

    Google Scholar 

  12. T. G. Volova, E. I. Shishatskaya, and A. J. Sinskey, Degradable Polymers: Production, Properties and Applications, Nova Sci. Publ. Inc., N. Y. (2013).

    Google Scholar 

  13. T. G. Volova and E. I. Shishatskaya, Degradable Polymers: Production, Properties and Applications [in Russian], Krasnoyarskii Pisatel, Krasnoyarsk (2011).

    Google Scholar 

  14. E. I. Shishatskaya, Izvestiya VUZov. Fiz., 56, No. 12/3,58–64 (2013).

  15. T. G. Volova, Izvestiya VUZov. Fiz., 56, No. 12/3, 27–32 (2013).

  16. V. E. Gunther, Methodological Peculiarities of Deformation Behavior of Metallic Medical Materials and Implants [in Russian], a study guide, NPP MITS Publ., Tomsk (2014).

    Google Scholar 

  17. V. N. Khodorenko, S. G. Anikeev, and V. E. Gunther, Russ. Phys. J., 57, No. 6, 723–730 (2014).

    Article  Google Scholar 

  18. A. V. Kasimtsev and Yu. V. Levinskii, Calcium Hydride Powders of Metals, Intermetallics, Heat-Resistant Compounds and Composite Materials [in Russian], MITKHT Publ., Moscow (2012).

    Google Scholar 

  19. S. G. Anikeev, N. V. Artyukhova, V. N. Khodorenko, et al., Russ. Phys. J., 61, No. 6, 1039–1046 (2018).

    Article  Google Scholar 

  20. S. G. Anikeev, A. S. Garin, N. V. Artyukhova, et al., Russ. Phys. J., 61, No. 4, 749–756 (2018).

    Article  Google Scholar 

  21. Ya. E. Geguzin, Living Crystal [in Russian], Nauka, Moscow (1987).

  22. L. Kang Suk-Joong Sintering, Densification, Grain Growth and Microstructure, Oxford University, Oxford (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Anikeev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 124–130, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeev, S.G., Artyukhova, N.V., Khodorenko, V.N. et al. The Surface Structure of a TiNi-Based Powder Alloy Manufactured by the Method of Diffusion Sintering. Russ Phys J 63, 484–490 (2020). https://doi.org/10.1007/s11182-020-02060-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-02060-0

Keywords

Navigation