Skip to main content
Log in

Electrophysical Model of the Micro-Arc Oxidation Process

  • Published:
Russian Physics Journal Aims and scope

On the basis of the equivalent electrical circuit proposed by the authors, a mathematical model of the formation of protective coatings by the micro-arc oxidation method has been developed, which allows modeling the forming curve at the anodizing stage. Expressions are derived for the surface porosity of the anodic oxide film and the minimum electron current flowing through the pores during the film breakdown. The conditions for the appearance of vapor-gas bubbles are considered. Using the Kolmogorov–Johnson–Mehl– Avrami equation, the possibility of calculating the fraction of formed crystalline aluminum oxide as a result of a phase transition is shown. The research results can be used to develop a generalized mathematical model of the micro-arc oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Yu and H.-Ch. Choe, Appl. Surf. Sci., 477, 121–130 (2019).

    Article  ADS  Google Scholar 

  2. R. F. Antonio, E. C. Rangel, B. A. Mas, et al., Surf. Coat. Technol., 357, 698–705 (2019).

    Article  Google Scholar 

  3. M. Sowa, M. Parafiniuk, C. M. S. Mouzelo, et al., Elect. Acta., 302, 10–20 (2019).

    Article  Google Scholar 

  4. A. Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand, Appl. Surf. Sci., 486, 153–165 (2019).

    Article  ADS  Google Scholar 

  5. Zh.-Y. Ding, Y.-H. Wang, J.-H. Ouyang, et al., Surf. Coat. Technol., 370, 187–195 (2019).

    Article  Google Scholar 

  6. M. B. Sedelnikova, E. G. Komarova, Y. P. Sharkeev, et al., Surf. Coat. Technol., 369, 52–68 (2019).

    Article  Google Scholar 

  7. W. Tu, Zh. Zhu, X. Zhuang, et al., Surf. Coat. Technol., 372, 34–44 (2019).

    Article  Google Scholar 

  8. Q. Xia, D. Zhang, D. Li, et al., Surf. Coat. Technol. 369, 252–256 (2019).

    Article  Google Scholar 

  9. J. Martin, A. V. Nomine, J. Stef, et al., Mater. Design, 178, 107859 (2019).

    Article  Google Scholar 

  10. M. Fazel, H. R. Salimijazi, M. Shamanian, et al., Surf. Coat. Technol., 374, 222–231.

  11. Z. Ye, D. Liu, X. Zhang, et al., Appl. Surf. Sci., 486, 72–79 (2019).

    Article  ADS  Google Scholar 

  12. L. Zhu, J. Qiu, J. Chen, et al., Surf. Coat. Technol., 369, 116–126 (2019).

    Article  Google Scholar 

  13. A. Buling and J. Zerrer, Surf. Coat. Technol., 369, 142–155 (2019).

    Article  Google Scholar 

  14. P. E. Golubkov, E. A. Pecherskaya, O. V. Karpanin, et al., Proc. 24th Conf. of Open Innovations Association FRUCT, Moscow (2019).

  15. F. Wei, W. Zhang, T. Zhang, et al., J. All. Com., 690, 195–205 (2017).

    Article  Google Scholar 

  16. P. E. Golubkov, E. A. Pecherskaya, O. V. Karpanin, et al., IOP Conf. Series: J. Phys.: Conf. Series, 917, 092021 (2017).

  17. A. R. Fatkulin and E. V. Parfenov, Vestn. Ufa State Aviation Tekh. Univer., 20, No. 4 (74), 38–44 (2016).

  18. A. V. Bol’shenko, Izv. Vyssh. Uchebn. Zaved. Tekh. Nauki, North Caucasus Region, No. 3, 32–36 (2012).

  19. P. E. Golubkov, E. A. Pecherskaya, O. V. Karpanin, et al., Proc. IV Int. Youth Scientific School-Seminar “Nanostructured Oxide Films and Coatings”, Petrozavodsk (2017).

  20. P. E. Golubkov, E. A. Pecherskaya, Y. V. Shepeleva, et al., IOP Conf. Series: J. Phys.: Conf. Series, 1124, 081014 (2018).

  21. E. A. Pecherskaya, P. E. Golubkov, O. V. Karpanin, et al., Proc. VI Int. Scient.-Tekh. Conf., “Micro- and Nanoelectronics Technologies in Micro- and Nanosystem Technology”, Moscow (2019).

  22. E. A. Pecherskaya, P. E. Golubkov, O. V. Karpanin, et al., Izv. Vyssh. Uchebn. Zaved. Electronika, 24, No. 4, 363–369 (2019).

    Google Scholar 

  23. V. N. Borikov, O. V. Stukach, and E. A. Popova, Proc. IEEE Int. Siberian Conf. Control and Communications. SIBCON-2007, Tomsk (2007).

  24. A. G. Rakoch, V. V. Khokhlov, V. A. Bautin, et al., Protection Metals, 42, No. 2, 158–169 (2006).

    Article  Google Scholar 

  25. Gh. B. Darband, M. Aliofkhazraei, P. Hamghalam, et al., J. Magnesium All., 5, 74–132 (2017).

    Article  Google Scholar 

  26. I. V. Suminov, A. V. Epel’feld, V. B. Lyudin, et al., Micro-Arc Oxidation (Theory, Technology, Equipment) [in Russian]. EKOMET, Moscow (2005).

    Google Scholar 

  27. M. M. Filyak and O. N. Kanygina, Vestn. Orenburg State Univer., No. 9 (184), 207–211 (2015).

  28. P. S. Gordienko, V. A. Dostovalov, I. G. Zhevtun, et al., Elektr. Obrabotka Mater., No. 49(4), 35–42 (2013).

  29. M. M. Filyak and O. N. Kanygina, Vestn. Orenburg State Univer., No. 1 (176), 245–249 (2015).

  30. V. Dehnavi, Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation, PhD thesis, The University of Western Ontario (2014).

  31. A. Yu. Churyumov, A. I. Bazlov, A. A. Tsar’kov, et al., Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metallurg., No. 6, 23–27 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. E. Golubkov, E. A. Pecherskaya, D. V. Artamonov, T. O. Zinchenko, Yu. E. Gerasimova or N. V. Rozenberg.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 166–171, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, P.E., Pecherskaya, E.A., Artamonov, D.V. et al. Electrophysical Model of the Micro-Arc Oxidation Process. Russ Phys J 62, 2137–2144 (2020). https://doi.org/10.1007/s11182-020-01958-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-020-01958-z

Keywords

Navigation