Skip to main content
Log in

Aspects of the Formation of Tin Oxide under Annealing of Nanopowders Obtained by Pulsed Laser Ablation of Metallic Tin in Aqueous Media

  • Published:
Russian Physics Journal Aims and scope

Nanocolloids, obtained by pulsed laser ablation (Nd:YAG laser, 1064 nm, 7 ns, 150 mJ) of metallic Sn in distilled water and also in solutions of hydrogen peroxide and nitric acid, were dried and subjected to heat treatment at different temperatures up to 800°С. It has been shown that addition of H2O2 or HNO3 has an effect not only on the size characteristics and structure of the initial nanoparticles, but also on the process of formation and the final characteristics of SnO2 under annealing. By the method of powder x-ray diffraction it was established that in the case of pulsed laser ablation in water and in a solution of nitric acid, the initial particles contain the phase SnO, but for annealed sample obtained by ablation in HNO3, an intermediate orthorhombic phase of SnO2 is formed. Additional studies using Raman spectroscopy and thermal analysis made it possible to determine the presence of tin hydroxide in the initial samples and formation of intermediate forms of its oxides, SnOx, upon annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47–154 (2005).

    Article  ADS  Google Scholar 

  2. S. Das and V. Jayaraman, Prog. Surf. Sci., 66, 112–255 (2014).

    Google Scholar 

  3. A. V. Marikutsa, M. N. Rumyantseva, E. A. Konstantinova, et al., J. Phys. Chem. C, 118, 21541−21549 (2014).

    Article  Google Scholar 

  4. J. Bae, J. Kim, H. Jeong, and H. Lee, Catal. Sci. Technol., 8, 782–789 (2018).

    Article  Google Scholar 

  5. C. Goebbert, R. Nonninger, M. A. Aegerter, and H. Schmidt, Thin Solid Films, 351, 79–84 (1999).

    Article  ADS  Google Scholar 

  6. M. Esro, S. Georgakopoulos, H. Lu, et al., Cryst. Eng. Comm., 19, 4413–4420 (2017).

    Article  Google Scholar 

  7. E. Comini, V. Guidi, C. Malagù, et al., J. Phys. Chem. B, 108, No. 6, 1882–1887 (2004).

    Article  Google Scholar 

  8. Y. Masuda, T. Ohji, and K. Kato, ACS Appl. Mater. Interfac., 4, 1666–1674 (2012).

    Article  Google Scholar 

  9. D. Mohanta and M. Ahmaruzzaman, RSC Adv., 6, 110996–111015 (2016).

    Article  Google Scholar 

  10. Z. Chen, D. Pan, Z. Li, et al., Chem. Rev., 114, 7442–7486 (2014).

    Article  ADS  Google Scholar 

  11. C. Ristoscu, L. Cultrera, A. Dima, et al., Appl. Surf. Sci., 247, 95–100 (2005).

    Article  ADS  Google Scholar 

  12. Z. Liu, D. Zhang, S. Han, et al., Adv. Mater., 15, No. 20, 1754–1757 (2003).

    Article  Google Scholar 

  13. A. Perrone, A. Zocco, H. de Rosa, et al., Mater. Sci. Eng. C, 22, 465–468 (2002).

    Article  Google Scholar 

  14. V. Amendola and M. Meneghetti, Phys. Chem. Chem. Phys., 15, 3027–3046 (2013).

    Article  Google Scholar 

  15. S. A. Kulinich, T. Kondo, Y. Shimizu, and T. Ito, J. Appl. Phys., 113, 033509– 033514 (2013).

    Google Scholar 

  16. T. Sasaki, C. Liang, W. T. Nichols, et al., Appl. Phys. A, 79, 1489–1492 (2004).

    Article  ADS  Google Scholar 

  17. B. K. Pandey, A. K. Shahi, J. Shah, et al., Appl. Surf. Sci., 289, 462–471 (2014).

    Article  ADS  Google Scholar 

  18. E. A. Gavrilenko, D. A. Goncharova, I. N. Lapin, et al., Materials (MDPI), 12, No. 1, Art. No. 186, 1–15 (2019).

  19. D. A. Goncharova, I. N. Lapin, E. S. Savel’ev, and V. A. Svetlichnyi, Russ. Phys. J., 60, No. 7, 1197–1205 (2017).

    Article  Google Scholar 

  20. V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 58, No. 11, 1598–1604 (2015).

    Article  Google Scholar 

  21. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, et al., Appl. Surf. Sci., 467–468, 402–410 (2019).

    Article  ADS  Google Scholar 

  22. V. A. Svetlichnyi, D. A. Goncharova, I. N. Lapin, and A. V. Shabalina, Russ. Phys. J., 61, No. 6, 1047–1053 (2018).

    Article  Google Scholar 

  23. E. T. Salem, Nanosci. Nanotechnol., 2, No. 3, 86–89 (2012).

    Article  Google Scholar 

  24. D. Sapkota, Y. Li, O. R. Musaev, et al., J. Laser Appl., 29, Art. No. 012002, 1–4 (2017).

  25. G. Bajaj and R. K. Soni, Appl. Phys. A, 97, 481–487 (2009).

    Article  ADS  Google Scholar 

  26. M. Koizumi, S. A. Kulinich, Y. Shimizu, and T. Ito, J. Appl. Phys., 114, 214301–214306 (2013).

    Google Scholar 

  27. N. Mintcheva, A. A. Aljulaih, S. Bito, et al., J. Alloy Compd., 747, 166–175 (2018).

    Article  Google Scholar 

  28. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, et al., Appl. Surf. Sci., 462, 226–236 (2018).

    Article  ADS  Google Scholar 

  29. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, et al., Appl. Phys. A, 123, No. 12, Art. No. 763, 1–8 (2017).

  30. M. A. Camacho-López, J. R. Galeana-Camacho, A. Esparza-García, et al., Superficies y Vacío, 26, No. 3, 95–99 (2013).

    Google Scholar 

  31. L. Sangaletti, L. E. Depero, B. Allieri, et al., J. Mater. Res., 13, No. 9, 2457– 2460 (1998).

    Article  ADS  Google Scholar 

  32. J. Geurts, S. Rau, W. Richter, and F. J. Schmitte, Thin Solid Films, 121, No. 3, 217–225 (1984).

    Article  ADS  Google Scholar 

  33. B. Eifert, M. Becker, C. T. Reindl, et al., Phys. Rev. Mater., 1, 014602–014608 (2017).

    Article  Google Scholar 

  34. F. H. Aragon, J. A. H. Coaquira, P. Hidalgo, et al., J. Raman Spectrosc., 42, 1081–1086 (2011).

    Article  ADS  Google Scholar 

  35. N. Sergent, M. Epifani, and T. Pagnier, J. Raman Spectrosc., 37, 1272–1277 (2006).

    Article  ADS  Google Scholar 

  36. A. Dieguez, A. Romano-Rodrıguez, A. Vila, and J. R. Morante, J. Appl. Phys., 90, No. 3, 1550–1557 (2001).

    Article  ADS  Google Scholar 

  37. D. M. Jang, H. Jung, N. D. Hoa, et al., J. Nanosci. Nanotechnol., 12, 1425–1428 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Fakhrutdinova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 205–212, August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhrutdinova, E.D., Lapin, I.N. & Svetlichnyi, V.A. Aspects of the Formation of Tin Oxide under Annealing of Nanopowders Obtained by Pulsed Laser Ablation of Metallic Tin in Aqueous Media. Russ Phys J 62, 1529–1537 (2019). https://doi.org/10.1007/s11182-019-01872-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01872-z

Keywords

Navigation