Skip to main content
Log in

Electrophysical Characteristics of the Pentacene-based MIS Structures with a SiO2 Insulator

  • Published:
Russian Physics Journal Aims and scope

In a wide range of frequencies and temperatures, the admittance of MIS structures based on pentacene organic films, formed by thermal evaporation in vacuum on SiO2 and SiO2/Ga2O3 substrates, was experimentally investigated. The capacitance-voltage characteristics of MIS structures with a SiO2 insulator have virtually no hysteresis. It is shown that at temperatures of 150–300 K, an inversion layer is formed in the structures at large positive bias voltages. The concentration of holes in pentacene, determined from the capacitive measurements, exceeds 1018 cm–3 and is practically independent of temperature and frequency. The experimental frequency dependences of the admittance of MIS structures with the SiO2 insulator are in good agreement with the results of calculations performed using the method of equivalent circuits. For structures with a Ga2O3 layer, the negative differential conductance of the insulating layer was detected, which requires the complication of the equivalent circuit. The possibility of using the low-temperature admittance measurements for studying the traps in the pentacene film bulk is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Sun and L. R. Dalton, Introduction to Organic Electronic and Optoelectronic Materials and Devices, Taylor & Francis, CRC Press, Boca Raton (2016).

    Google Scholar 

  2. P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices, John Wiley & Sons, Chichester (2009).

    Book  Google Scholar 

  3. E. H. Nicollian and J. R. Brews MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York (1982).

  4. O. J. Sandberg, M. Nyman, S. Dahlström, et al., Appl. Phys. Lett., 110, No. 15, 153504 (2017).

  5. A. Larsen, E. Dahal, J. Paluba, et al., Org. Electron., 62, 660-666 (2018).

    Article  Google Scholar 

  6. T. Noma, D. Taguchi, T. Manaka, et al., Org. Electron., 43, 70-76 (2017).

    Article  Google Scholar 

  7. Y. S. Yang, S. H. Kim, J. I. Lee, et al., Appl. Phys. Lett., 80, No. 9, 1595–1597 (2002).

    Article  ADS  Google Scholar 

  8. N. Alves and D. M. Taylor, Appl. Phys. Lett., 92, No. 10, 92 (2008).

    Article  Google Scholar 

  9. I. Torres and D. M. Taylor, J. Appl. Phys., 98, No. 7, 073710 (2005).

  10. M. Estrada, F. Ulloa, M. Ávila, et al., IEEE Trans. Electron Dev., 60, No. 6, 2057–2063 (2013).

    Article  ADS  Google Scholar 

  11. H. Hirwa, S. Pittner, and V. Wagner, Org. Electron., 24, 303–314 (2015).

    Article  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 4, 536–544 (2014).

    Article  Google Scholar 

  13. I. I. Izhnin, S. N. Nesmelov, S. M. Dzyadukh, et al., Nanoscale Res. Lett., 11, 53 (2016).

    Article  ADS  Google Scholar 

  14. P. Juhasz, M. Vary, L. Stuchlikova, et al., Org. Electron., 17, 240–246 (2015).

    Article  Google Scholar 

  15. J. W. Zhang, Y. He, X. Q. Chen, et al., Org. Electron., 21, 73–77 (2015).

    Article  Google Scholar 

  16. S. F. Nelson, Y. Y. Lin, D. J. Gundlach, et al., Appl. Phys. Lett., 72, No. 15, 1854–1856 (1998).

    Article  ADS  Google Scholar 

  17. Y. X. Ma, C. Y. Han, W. M. Tang, et al., Appl. Phys. Lett., 111, 023501 (2017).

    Article  ADS  Google Scholar 

  18. L. M. Pazos-Outón, J. M. Lee, M. H. Futscher, et al., ACS Energy Lett., 2, 476–480 (2017).

    Article  Google Scholar 

  19. Y. J. Lin and C. C. Hung, Microelectron. Rel., 81, 90–94 (2018).

    Article  Google Scholar 

  20. C. Y. Han, W. M. Tang, C. H. Leung, et al., IEEE Trans. Electron Dev., 62, No. 7, 2313–2319 (2015).

    Article  ADS  Google Scholar 

  21. W. Wang, X. Shi, X. Li, et al., IEEE Electron Dev. Lett., 37, No. 10, 1332–1335 (2016).

    Article  ADS  Google Scholar 

  22. E. Orgiu, S. Locci, B. Fraboni, et al., Org. Electron., 12, 477–485 (2011).

    Article  Google Scholar 

  23. S. J. Pearton, J. Yang, P. H. Cary IV, et al., Appl. Phys. Rev., 5, 011301 (2018).

    Article  ADS  Google Scholar 

  24. C. T. Lee, H. Y. Lee, and H. W. Chen, IEEE Electron Dev. Lett., 24, No. 2, 54–56 (2003).

    Article  ADS  Google Scholar 

  25. V. M. Kalygina, A. N. Zarubin, E. P. Naiden, et al., Fiz. Tekh. Poluprovodn., 45, No. 8, 1130– 1135 (2011).

    Google Scholar 

  26. E. Bezzeccheri, A. Femia, R. Liguori, et al., Mater. Today: Proc., 4, No. 4, 5045–5052 (2017).

    Google Scholar 

  27. R. A Liguori, Study on Defects in Organic Semiconductors for Field Effect Transistors, Tesi di Dottorato (2014).

  28. I. V. Romanov, A. V. Voitsekhovskii, K. M. Degtyarenko, et al., Russ. Phys. J., 57, No. 11, 1584–1592 (2015).

    Article  Google Scholar 

  29. A. Nigam, M. Premaratne, and P. R. Nair, Org. Electron., 14, 2902–2907 (2013).

    Article  Google Scholar 

  30. A. Nigam, P. R. Nair, M. Premaratne, et al., IEEE Electron Dev. Lett., 35, No. 5, 581–583 (2014).

    Article  ADS  Google Scholar 

  31. A. Sleiman, M. C. Rosamond, M. Alba Martin, et al., Appl. Phys. Lett., 100, No. 2, 14 (2012).

    Article  Google Scholar 

  32. A. Benor, A. Hoppe, V. Wagner, et al., Org. Electron., 8, 749–758 (2007).

    Article  Google Scholar 

  33. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 48, No. 6, 584–591 (2005).

    Article  Google Scholar 

  34. K. Ghosh. and U. Singisetti, Appl. Phys. Lett., 109, 072102 (2016).

    Article  ADS  Google Scholar 

  35. K. Ghosh. and U. Singisetti, J. Appl. Phys., 122, No. 3, 035702 (2017).

    Article  ADS  Google Scholar 

  36. R. Ruiz, D. Choudhary, B. Nickel, et al., Chem. Mater., 16, 4497–4508 (2004).

    Article  Google Scholar 

  37. H. Klauk, M. Halik, U. Zschieschang, et al., Appl. Phys. Lett., 82, 4175–4177 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Novikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 79–87, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.A., Voitsekhovskii, A.V., Nesmelov, S.N. et al. Electrophysical Characteristics of the Pentacene-based MIS Structures with a SiO2 Insulator. Russ Phys J 62, 90–99 (2019). https://doi.org/10.1007/s11182-019-01687-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01687-y

Keywords

Navigation