Skip to main content
Log in

Heterostructures Based on Magnetic and Topological Insulators

  • Published:
Russian Physics Journal Aims and scope

Using ab initio calculations, an investigation of the electronic structure of the magnetic insulator/topological insulator heterostructures is performed. Bismuth selenide is used as a topological insulator and monolayers of vanadium-based van der Waals materials VSe2 and VBi2Se4 – as magnetic materials. The formation of the latter one is possible via diffusion of the deposited vanadium and selenium atoms into the surface block of the layered Bi2Se3. A comparison of the electronic structure of the two heterostructures is performed and peculiar features of interaction of the Dirac state of the topological insulator with the magnetic states of vanadium are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Kane and E. J. Mele, Phys. Rev. Lett., 95, 146802 (2005).

    Article  ADS  Google Scholar 

  2. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 318, 766 (2007).

    Article  Google Scholar 

  3. D. Hsieh, D. Qian, L. Wray, et al., Nature, 452, 970 (2008).

    Article  ADS  Google Scholar 

  4. H. Zhang, C.-X. Liu, X.-L. Qi, et al., Nature Phys., 5, 438 (2009).

    Article  ADS  Google Scholar 

  5. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 82, 3045 (2010).

    Article  ADS  Google Scholar 

  6. S. V. Eremeev, G. Landolt, T. V. Menshchikova, et al., Nature Commun., 3, 635 (2012).

    Article  Google Scholar 

  7. G. Landolt, S. Schreyeck, S. V. Eremeev, et al., Phys. Rev. Lett., 112, 057601 (2014).

    Article  ADS  Google Scholar 

  8. A. M. Shikin, I. I. Klimovskikh, S. V. Eremeev, et al., Phys. Rev. B, 89, 125416 (2014).

    Article  ADS  Google Scholar 

  9. A. Sulaev, M. Zeng, S.-Q. Shen, et al., Nano Lett. 15, 2061 (2015).

    Article  ADS  Google Scholar 

  10. X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B, 74, 085308 (2006).

    Article  ADS  Google Scholar 

  11. A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett., 102, 146805 (2009).

    Article  ADS  Google Scholar 

  12. Q. Liu, C. X. Liu, C. Xu, et al., Phys. Rev. Lett., 102, 156603 (2009).

    Article  ADS  Google Scholar 

  13. J. Henk, A. Ernst, S. V. Eremeev, et al., Phys. Rev. Lett., 108, 206801 (2012).

    Article  ADS  Google Scholar 

  14. Y. L. Chen, J. H. Chu, J. G. Analytis, et al., Science, 329, 659 (2010).

    Article  ADS  Google Scholar 

  15. S. V. Eremeev, V. N. Men’shov, V. V. Tugushev, and E. V. Chulkov, Phys. Rev. B, 88, 144430 (2013).

    Article  ADS  Google Scholar 

  16. V. N. Men’shov, V. V. Tugushev, S. V. Eremeev, et al., Phys. Rev. B, 88, 224401 (2013).

    Article  ADS  Google Scholar 

  17. C. Z. Chang, J. Zhang, X. Feng, et al., Science, 340, 167 (2013).

    Article  ADS  Google Scholar 

  18. J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, et al., Nature Phys., 10, 731 (2014).

    Article  ADS  Google Scholar 

  19. M. Mogi, R. Yoshimi, A. Tsukazaki, et al., Appl. Phys. Lett., 107, 182401 (2015).

    Article  ADS  Google Scholar 

  20. C. Zu. Chang, J. Zhang, and X. Feng, Science, 340, 459 (2016).

    Google Scholar 

  21. V. N. Men’shov, V. V. Tugushev, E. V. Chulkov, JETP Lett., 104, Iss. 7, 453 (2016).

  22. S. V. Eremeev, V. N. Menshov, V. V. Tugushev, and E. V. Chulkov, JMMM, 38, 243 (2015).

    Google Scholar 

  23. Y. S. Hou and R. Q. Wu, J. High Energy Phys., 06, 1837 (2011).

    Google Scholar 

  24. T. Hirahara, S. V. Eremeev, T. Shirasawa, et al., Nano Lett., 17, 3493 (2017).

    Article  ADS  Google Scholar 

  25. S. V. Eremeev, M. M. Otrokov, and E. V. Chulkov, J. Alloys Compounds, 709, 172 (2017).

    Article  Google Scholar 

  26. S. V. Eremeev, Yu. M. Koroteev, and E. V. Chulkov, JETP Lett., 92, 161 (2010).

    Article  ADS  Google Scholar 

  27. T. Okuda, T. Maegawa, M. Ye, et al., Phys. Rev. Lett., 111, 206803 (2013).

    Article  ADS  Google Scholar 

  28. T. V. Menshchikova, S. V. Eremeev, Yu. M. Koroteev, et al., JETP Lett., 93, 15 (2011).

    Article  ADS  Google Scholar 

  29. T. V. Menshchikova, S. V. Eremeev, and E. V. Chulkov, JETP Lett., 94, 106 (2011).

    Article  ADS  Google Scholar 

  30. T. V. Menshchikova, S. V. Eremeev, I. V. Silkin, et al., Phys. Rev. B, 91, 245145 (2015).

    Article  ADS  Google Scholar 

  31. M. M. Otrokov, T. V. Menshchikova, M. G. Vergniory, et al., 2D Materials, 4, 025082 (2017).

    Article  Google Scholar 

  32. M. M. Otrokov, T. V. Menshchikova, I. P. Rusinov, et al., JETP Lett., 105, Iss. 5, 297 (2017).

  33. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, 15 (1996).

    Article  Google Scholar 

  34. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1998).

    Article  ADS  Google Scholar 

  35. V. I. Anisimov, J. Zaanen, and O. K. Anderson, Phys. Rev. B, 44, 943 (1991).

    Article  ADS  Google Scholar 

  36. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, et al., Phys. Rev. B, 57, 1505 (1998).

    Article  ADS  Google Scholar 

  37. M. Cococcioni and S. Gironcoli, Phys. Rev. B, 71, 035105 (2005).

    Article  ADS  Google Scholar 

  38. I. Tsubokawa, J. Phys. Soc. Jpn., 14, 196 (1958).

    Article  ADS  Google Scholar 

  39. E. Hoschek and W. Klemm, Z. Anorg. Allg. Chem., 242, Iss. 1, 60 (1939).

  40. W. Biltz and A. Kocher, Z. Anorg. Allg. Chem., 241, 324 (1939).

    Article  Google Scholar 

  41. F. K. Lotgering and E. W Gorter, J. Phys. Chem. Solids, 3, Iss. 3–4, 238 (1957).

  42. L. Vadkhiya and A. Dashora, JMMM, 322, 2857 (2010).

    Article  ADS  Google Scholar 

  43. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Nature Nanotechnol., 7, 699 (2012).

    Article  ADS  Google Scholar 

  44. M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev., 113, 3766 (2013).

    Article  Google Scholar 

  45. M. Chhowalla, H. S. Shin, G. Eda, et al., Nat. Chem., 5, 263 (2013).

    Article  Google Scholar 

  46. X. Huang, Z. Y. Zeng, and H. Zhang, Chem. Soc. Rev., 42, 1934 (2013).

    Article  Google Scholar 

  47. A. K. Geim and I. V. Grigorieva, Nature, 499, 419 (2013).

    Article  Google Scholar 

  48. J. A. Wilson and A. D. Yoffe, Adv. Phys., 18, 193 (1969).

    Article  ADS  Google Scholar 

  49. F. Li, K. Tu, and Z. Chen, J. Phys. Chem., 118, 21264 (2014).

    Google Scholar 

  50. Y. Ma, Y. Dai, M. Guo, et al., ACS Nano, 6, No. 2, 1695 (2012).

    Article  Google Scholar 

  51. H. R. Fuh, B. Yan, S. C. Wu, et al., New J. Phys., 18, 113038 (2016).

    Article  ADS  Google Scholar 

  52. H. P. Hughes, C. Webb, and P. M. Williams, J. Phys. C: Solid State Physics, 13, 1125 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bezryadina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 15–21, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezryadina, T.V., Eremeev, S.V. Heterostructures Based on Magnetic and Topological Insulators. Russ Phys J 61, 1964–1970 (2019). https://doi.org/10.1007/s11182-019-01625-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01625-y

Keywords

Navigation