Skip to main content
Log in

Nonlinear Polarization Effects in Dielectrics with Hydrogen Bonds

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

Using quasiclassical kinetic theory, nonlinear phenomena under the formation of space-charge polarization in crystals with hydrogen bonds (HBC) are investigated. From the solution of the nonlinear system of Fokker-Planck and Poisson equations with blocking electrodes, it is established that for the mathematical description of the relaxation polarization in HBCs in weak fields (100-1000 kV/m) and at high temperatures (T> 350 K), it is sufficient to use a linear approximation of perturbation theory. Theoretically, it was found that at the first odd frequency of the alternating field, nonlinear effects caused by the interaction of relaxation modes of various frequency orders start to appear. The diffusion and mobility coefficients are calculated taking into account both mechanisms of the protons transitions (thermally activated and tunneling transitions) through a parabolic potential barrier. A recurrence expression is constructed for calculating complex amplitudes of relaxation modes generated at an arbitrary frequency (multiple to the fundamental frequency) of the alternating field in an arbitrary approximation of perturbation theory. The proposed scheme for solving the kinetic equation can be applied to other crystals with ionic conductivity similar to HBCs in the type and properties of the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. Tonkonogov, Usp. Fiz. Nauk, 168, Vyp. 1, 29–54 (1998).

    Article  Google Scholar 

  2. V. Ya. Medvedev and M. P. Tonkonogov, Russ. Phys. J., 33, No. 11, 958–962 (1990).

    Google Scholar 

  3. V. M. Timokhin, Pricladn. Fiz., No. 1, 12–19 (2012).

    Google Scholar 

  4. V. A. Kalytka, Z. K. Baimukhanov, and A. D. Mekhtiyev, Doklady Akadem. Nauk. Vyssh. Shkoly Ross. Feder., No. 3 (32), 7–21 (2016).

  5. V. A. Kalytka and T. Yu. Nikonova, Proceedings of the XIII-th International Scientific-Tech. Conf. "Actual Problems of Electronic Instrument Engineering” (APEIE-2016) . The electronic physical section [in Russian], Izd. NGTU, Novosibirsk (2016).

  6. V. A. Kalytka, M. V. Korovkin, A. D. Mekhtiyev, and A. D. Al’kina, Vestn. Moskov. Gosud. Oblastn. Unevers., Ser. Fiz. Matem., No. 4, 39–54 (2017).

  7. A. K. Demin and L. A. Denyushkina, Proceedings of International Symposium on Solid Oxide Fuel Cells, Aachen, Germany; Pennington, NG, USA, 1349–1358 (1997).

  8. I. E. Animitsa, Elektrokhim., 45, No. 6, 712–721 (2009).

    Google Scholar 

  9. R. Reijers and W. Haijer, Literature Review on High Temperature Proton Conducting Materials, Energy Research Centre of the Netherlands, December (2008).

  10. A. B. Yaroslavtsev, Usp. Khim., 85, 1255 (2016).

    Article  Google Scholar 

  11. J. F. Zeigler, J. P. Biersack, and M. D. Zeigler, SRIM – The Stopping and Range of Ions in Matter, 398 (2012).

  12. N. V. Tokii, B. I. Perekrestov, D. L. Savina, and I. A. Danilenko, Fiz. Tekh. Poluprovodn., 53, Vyp. 9, 1732–1736 (2001).

    Google Scholar 

  13. I. V. Khromushin and T. I. Aksenova, Abstracts of the Intern. Sci. Forum "Nuclear Science and Technology", Almaty (2017).

  14. I. V. Khromushin and T. I. Aksenova, Vestn. of the National Nuclear Center of the Republic of Kazakhstan, Vyp. 1, 55–61 (2017).

  15. I. V. Khromushin, T. I. Aksenova, and Yu. M. Baikov, Russ. J. Electrochem., 53, No. 6, 647–650 (2017).

    Article  Google Scholar 

  16. Yu. M. Annenkov, A. S. Ivashutenko, I. V. Vlasov, and A. V. Kabyshev, Izv. Tomsk. Politekh. Univers., 308, No. 7, 35–38 (2005).

    Google Scholar 

  17. I. A. Kulagin, R. A. Ganeev, and R. I. Tugushev, Kvant. Elektron., 34, 657–662 (2004).

    Article  ADS  Google Scholar 

  18. Sean Hart, Hechen Ren, and Timo Vagner, et al., Nature Phys., 10, 638–643 (2014).

    Article  ADS  Google Scholar 

  19. T. Cao and S. Wang, Nanoscale Res. Lett., 8(526), 1–8 (2013).

    ADS  Google Scholar 

  20. Alexander B. Khanikaev, Mousavi S. Hossein, Wang- Kong Tse, et al., Nature Mater., 12, 233–239 (2013).

    Article  ADS  Google Scholar 

  21. Zh. Kudyshev, H. Reddy, U. Guler, et al., ACS Photonics, 4(6), 1413–1420 (2017).

    Article  Google Scholar 

  22. A. Zhaxylyk, Zh. Kudyshev, Brian M. Wells, et al., ACS Photonics, 4(10), 2470–2478 (2017).

    Article  Google Scholar 

  23. Zh. A. Kudyshev, S. Will, and N. M. Litchinitser, Photonics and Nanostructures – Fundamentals and Applications, 13, 1–7 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kalytka.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 138–148, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalytka, V.A., Korovkin, M.V., Mekhtiyev, A.D. et al. Nonlinear Polarization Effects in Dielectrics with Hydrogen Bonds. Russ Phys J 61, 757–769 (2018). https://doi.org/10.1007/s11182-018-1457-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1457-8

Keywords

Navigation