Skip to main content
Log in

The Influence of Modification on Crystal Lattice Stability of Austenite in Stainless Steel

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Using the methods of electron diffraction microscopy and X-ray diffraction analysis, the influence of alloying of the austenitic steel, Grade 110H13, with chromium and vanadium, as well as high-melting, ultrafine-grained TiO2, ZrO2 powders and Na3AlF6 cryolite on its structural-phase state and microstructure is investigated. It is shown that the matrix of non-modified steel is completely austenitic and consists of an iron-based solid solution and the interstitial (C, N, O and other) and substitutional (Cr, V and other) atoms simultaneously. Alloying with chromium and vanadium changes neither its phase composition nor defect structure, while alloy modification results in qualitatively new structural features: γ → ε-transformation, high-intensity microtwinning, defect structure changes, and a sharp increase in the scalar dislocation density. The features of the deformation-induced microtwinning and ε-martensite plates identified in the modified steel promote revealing additional microtwin systems in the matrix γ-phase, which result in structural changes making it possible to classify it as a γ′-phase. It is found out that an introduction of modifying additions gives rise to the following sequence of structural-phase transformations: γ→γ′→(γ′ +ε). The experimental data obtained demonstrate that as a result of modification the crystal lattice transits into a low-stability state. This transition is accompanied by marked structural-phase changes consisting in the formation of several microtwin systems and γ → ε-transformation. These structural-phase changes in the modified steel are due to the crystal-lattice transition into the low-stability state, followed by new structural-phase alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Volynova, High-Manganese Steels and Alloys [in Russian], Metallurgiya, Moscow (1988).

    Google Scholar 

  2. E. G. Astafurova, M. S. Tukeeva, and Yu. I. Chumlyakov, Russ. Phys. J., 50, No. 10, 959–963 (2007).

    Article  Google Scholar 

  3. V. N. Udodov, A. A. Popov, E. V. Kozlov, et al., Russ. Phys. J., 43, No. 8, 621–626 (2000).

    Article  Google Scholar 

  4. S. B. Sant and R. W. Smith, Strength of Metals and Alloys (ICSMA 7), in: Proc. 7th Int. Conf. on the Strength of Metals and Alloys, 219–224, Montreal, Canada (1985).

  5. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on the Structural-Phase Transformations in the Pre-Transitional Region of Metallic Systems [in Russian], (Ed. A. I. Potekaev), NTL Publ., Tomsk (2014).

    Google Scholar 

  6. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems under Thermal-Force Loading [in Russian], (Ed. A. I. Potekaev), NTL Publ., Tomsk (2015).

    Google Scholar 

  7. V. V. Kulagina and A. I. Potekaev, Izv. Vyssh. Uchebn. Zaved. Fiz., 54, No. 11/3, 369–376 (2011).

    Google Scholar 

  8. P. A. Chaplygin, A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).

    Article  Google Scholar 

  9. A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).

    Article  Google Scholar 

  10. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).

    Article  Google Scholar 

  11. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 11, 1248–1257 (2013).

    Article  Google Scholar 

  12. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 56, No. 6, 215–227 (2013).

    Article  Google Scholar 

  13. A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 620–629 (2017).

    Article  Google Scholar 

  14. A. I. Potekaev, A. A. Klopotov, L. I. Trishkina, Izvestiya RAS. Ser. Fiz., 80, No. 11, 1576–1578 (2016).

    Google Scholar 

  15. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2017).

    Article  Google Scholar 

  16. A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, V. V. Kulagina, et al., Russ. Phys. J., 54, No. 9, 1012–1023 (2011)

    Google Scholar 

  17. A. I. Potekaev, M. M. Morozov, A. A. Klopotov, Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., 58, No. 8, 589–596 (2015).

    Google Scholar 

  18. N. Popova, T. Dement, E. Nikonenko, et al., in: AIP Conf. Proc., 1800, 030001 (1–7) (2017).

  19. I. N. Bogachev and T. D. Eysmondt, Fiz. Met. Metalloved., 30, No. 6, 1213–1220 (1970).

    Google Scholar 

  20. L. I. Lysak and B. I. Nikolin, Physical Fundamentals of Heat Treatment of Steel [in Russian], Tekhnika, Kiev (1975).

    Google Scholar 

  21. P. Yu. Volosevich, Metallofizika, Iss. 75, 43–48 (1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kurzina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 99–105, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurzina, I.A., Potekaev, A.I., Popova, N.A. et al. The Influence of Modification on Crystal Lattice Stability of Austenite in Stainless Steel. Russ Phys J 61, 715–721 (2018). https://doi.org/10.1007/s11182-018-1452-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1452-0

Keywords

Navigation