Skip to main content
Log in

Structure Amorphization and Mechanical Properties of Nanolaminates of the Copper–Niobium System During High-Pressure Torsion

  • Published:
Russian Physics Journal Aims and scope

The results of investigation of structural transformations and mechanical behavior of nanolaminates are reported, which were manufactured by multiple rolling of alternating layers of copper and niobium, followed by high-pressure torsion in the Bridgeman chamber. A detailed analysis of structure alteration of the material under study is performed by the high-resolution TEM methods. The changes in the value of microhardness in three dimensions (3D) are investigated during variation of the degree of straining of nanolaminates in the course of their torsion. A phenomenon of structure amorphization and a sharp increase in strength characteristics are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. K. Schuller, Phys. Rev. Lett., 44, No. 24, 1597–1600 (1980).

    Article  ADS  Google Scholar 

  2. I. J. Beyerlein, N. A. Mara, J. S. Carpenter, et al., J. Mater. Res., 28, No. 13, 1799–1812 (2013).

    Article  ADS  Google Scholar 

  3. J. S. Carpenter, S. C. Vogel, J. E. LeDonne, et al., Acta Mater., 60, No. 4, 1576–1586 (2012).

    Article  Google Scholar 

  4. M. I. Karpov, V. I. Vnukov, N. V. Medved, et al., Proc. 15-th Int. Plansee Seminar (28 May – 1 June 2001. Reutte, Austria), 4, 97–107 (2001).

  5. M. I. Karpov, B. A. Gnessin, V. I. Vnukov, et al., Proc. 16-th Int. Plansee Seminar. (30 May – 3 June, 2005. Reutte, Austria), 1, 785–795 (2005).

  6. V. P. Korzhov and M. I. Karpov, J. Phys. High Pressure Technol., 21, No. 2, 92–102 (2011).

    Google Scholar 

  7. M. I. Karpov, B. A. Gnessin, V. I. Vnukov, et al., Proc. Intr. Conf. «Advanced Metallic Materials». (5–7 November 2003. Smolenice Castle, Slovakia), Bratislava, Slovakia: Published at Institute of Materials &Machine Mechanics. Slovak Academy of Sciences, 141–143 (2003).

  8. I. A. Ovid'ko, J. Phys. D: Appl. Phys., 24, No. 12, 2190–2195 (1991).

    Article  ADS  Google Scholar 

  9. V. I. Betekhtin, Yu. R. Kolobov, B. K. Kardashev, et al., Tech. Phys. Lett., 38, No. 2, 144–146 (2012).

    Article  ADS  Google Scholar 

  10. M. Saber, H. Kotan, C. C. Koch, and R. O. Scattergood, J. Appl. Phys., 113, 063515(1–10) (2013).

  11. R. A. Andrievski, Russ. Chem. Rev., 83, No. 4, 365–375 (2014).

    Article  ADS  Google Scholar 

  12. S. Zheng, I. J. Beyerlein, J. S. Carpenter, et al., Nature Commun., 4, 1696– 1703 (2013).

    Article  Google Scholar 

  13. I. J. Beyerlein, J. R. Mayeur, S. Zheng, et al., Proc. Natl. Acad. Sci. USA, 111, 4386–4390 (2014).

    Article  ADS  Google Scholar 

  14. A. V. Kuznetsov, N. D. Stepanov, G. A. Salishchev, et al., Russian Metallurgy (Metally), 2010, No. 11, 1072–1079 (2010).

    Article  ADS  Google Scholar 

  15. E. H. Ekiz, T. G. Lach, R. S. Averback, et al., Acta Mater., 72, 178–191 (2014).

    Article  Google Scholar 

  16. Yu. R. Kolobov, A. G. Lipnitskii, I. V. Nelasov, and G. P. Grabovetskaya, Russ. Phys. J., 51, No. 4, 385–399 (2008).

    Article  Google Scholar 

  17. A. G. Lipnitskii, I. V. Nelasov, E. V. Golosov, et al., Russ. Phys. J., 56, No. 3, 330–337 (2013).

    Article  Google Scholar 

  18. I. V. Nelasov, A. G. Lipnitskii, and Yu. R. Kolobov, Russ. Phys. J., 52, No. 11, 1193–1198 (2009).

    Article  Google Scholar 

  19. S. Wei, H. Oyanagi, C. Wen, et al., J. Phys.: Cond. Matter., 9, No. 50, 11077–11083 (1997).

    ADS  Google Scholar 

  20. A. M. Glezer, Bull. Russ. Acad. Sci.: Phys., 71, No. 12, 1722–1730 (2001).

    Article  Google Scholar 

  21. El-Eskandarany M. Sherif, K. Aoki, K. Sumiyama, and K. Suzuki, Acta Mater., 50, No. 5, 1113–1123 (2002).

    Article  Google Scholar 

  22. I. E. Permyakova, A. M. Glezer, and K. V. Grigorovich, Bull. Russ. Acad. Sci.: Phys., 78, No. 10, 996–1000 (2014).

    Article  Google Scholar 

  23. K. Yasuna, M. Tarauchi, A. Otsuki, et al., J. Appl. Phys., 82, No. 5, 2435–2438 (1997).

    Article  ADS  Google Scholar 

  24. B. Huang, K. N. Ishihara, and P. H. Shingu, J. Mater. Sci. Lett., 19, No. 19, 1763–1765 (2000).

    Article  Google Scholar 

  25. D. V. Shtansky, K. Kaneko, Y. Ikuhara, and E. A. Levashov, Surf. Coat. Technol., 148, No. 2–3, 206–215 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Permyakova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 28–37, March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakova, I.E., Glezer, A.M., Karpov, M.I. et al. Structure Amorphization and Mechanical Properties of Nanolaminates of the Copper–Niobium System During High-Pressure Torsion. Russ Phys J 61, 428–438 (2018). https://doi.org/10.1007/s11182-018-1417-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1417-3

Keywords

Navigation